
United States Patent (19)
Wood

54 METHOD OF CRYPTOGRAPHICALLY
TRANSFORMINGELECTRONIC DIGITAL
DATA FROM ONE FORM TO ANOTHER

75 Inventor: Michael C. Wood, Jamestown, N.Y.
73 Assignee: Cryptech, Inc., Jamestown, N.Y.
21 Appl. No.: 395,448
(22 Filed: Aug. 17, 1989
51) Int. Cl. ... H04L 9/06
(52) U.S.C. .. 380/28; 380/9;

380/37; 380/43; 380/50
58) Field of Search 380/9, 23, 25, 28-30,

380/43, 49, 50, 37, 42, 21
56) References Cited

U.S. PATENT DOCUMENTS
Re. 30,957 6/1982. Feistel 380/48
3,461,451 8/1969 Guteber 341/1.78
3,796,830 3/1974 Smith 380/37
3,798,359 3/1974 Feistel 380/37
3,798,360 3/1974 Feistel 380/37
3,958,081 5/1976 Ehrsam et al.. 380/29
3,962,539 6/1976 Ehrsam et al. . 380/29
4,074,066 2/1978 Ehrsam et al. 380/25
4,078, 52 3/1978 Tuckerman, III. ... 380/37
4,107,458 8/1978 Constant 380/37
4,157,454 6/1979. Becker 380/37
4, 160,120 7/1979 Barnes et al. 380/29
4, 172,213 10/1979 Barnes et al. 380/29
4,202,051 5/1980 Davida et al. 380/46
4,206,315 6/1980 Matyas et al. 380/2.3
4,255,811 3/1981. Adler 380/37
4,274,085 6/1981 Marino, Jr. 380/29
4,275,265 6/1981 Davida et al. ... 380/29
4,316,055 2/1982 Feistel 380/37
4,322,577 3/1982 Brandstrom ... 380/37
4,369,332 l/1983 Campbell 380/43
4,375,579 3/1983 Davida et al. ... 380/28
4,703,503 10/1987 Asai 380/28
4,731,843 3/1988 Holmquist 380/29
4,751,733 6/1988 Delayaye et al. ... 380/42
4,759,062 7/1988 Traub et al...... ... 380/25
4,760,600 7/1988 Nakai 380/50
4,776,011 10/1988 Busby...... ... 380/37
4,797,921 1/1989 Shiraishi. ... 380/28
4,809,327 2/1989 Shima 380/44
4,893,339 1/1990 Bright et al. 380/28

O

FNTIALIze
TAses IN
MEMORY

select First
Block OF
PLANTExt

5,003,596
Mar. 26, 1991

Patent Number:
Date of Patent:

11)

45

OTHER PUBLICATIONS

Privacy and Authentication: An Introduction to Cryp
tography, Whitfield Diffie and Martin E. Hellman,
Proceedings of the IEEE, vol. 67, No. 3, Mar. 1979, p.
397.
The Data Encryption Standard: Past and Future, Miles
E. Smid and Dennis K. Branstad, Proceedings of the
IEEE, vol. 76, No. 5, May 1988, p. 550.
An Introduction to Contemporary Cryptology, James
L. Massey, Proceedings of the IEEE, vol. 76, No. 5,
May 1988, p. 533.
Primary Examiner-Stephen C. Buczinski
Assistant Examiner-Bernarr Earl Gregory
Attorney, Agent, or Firm-Webb, Burden, Ziesenheim &
Webb

57) ABSTRACT
A cryptographic system creates a key table from a sin
gle key such that the relationship between the keys in
the key table cannot be determined even if the system
implementation is known. The system uses variable
functions in which the determinants are changed by the
variable function chosen by the determinant. Thus, the
functions used in creating the key table do not have to
be one-to-one functions. From the key table, four blocks
of bytes of additional key based determinants are
formed which are called masks. The original key does
not exist in either the key table or the mask table. The
system preferably uses the key table in a multiple round
encryption process. The keys chosen from the table for
a key addition operation are a function of the plaintext,
the current state of the ciphertext, and the mask values.
Therefore, the order in which the keys are chosen is not
predetermined or patterned. The system also selects the
other encryption functions, including permutations and
substitutions, by the plaintext, current state of the ci
phertext and the mask values. The cryptographic sys
tem also can include a function referred to as the en
clave function. This function operates on lookup tables
and creates complete inter-symbol dependency on the
block of bytes.

62 Claims, 15 Drawing Sheets

Select Next
Block of
PAINText

U.S. Patent Mar. 26, 1991 Sheet 1 of 15 5,003,596

O

INTALIZE
TABLES IN
MEMORY

2

SELECT FIRST
BLOCK OF
PLANTEXT

ENCRYPT BLOCK
OF PLANTEXT

4

SELECT NEXT
BLOCK OF
PLAINTEXT

PLANTEXT

22

Fig.

U.S. Patent Mar. 26, 1991 Sheet 2 of 15 5,003,596

LOAD PERMUTATION, S-Box 13O
AND EN CLAVE TABLES

LOAD KEY 32

34
NITALIZING
VECTOR (IV)

36

KEY XOR V -> KEY

CREATE KEY TABLE 38

(KEY KEY2 KEY3, ', KEY)

CREATE MASK TABLE 4O
(MASK , MASK2, MASK3, MASK4)

Fig.2

U.S. Patent Mar. 26, 1991 Sheet 3 of 15 5,003,596

knkn2kn3Kn 4Kn5KneKn 7Knskneknio

- . .
53 5

Fig. 3
ENCRYPTION

P P1 (BLOCK)
oo.

HH E.

DECRYPTION
P (BLOCK)

U.S. Patent Mar. 26, 1991 Sheet 4 of 15 5,003,596

PANTEXT SUBSTITUTION PLAINTEXT
VALUE VALUE VALUE

Po SO Po

P S P

O O O

O O O

O O O

P Sx Po
O O O

O O O

O O O

Pb Sy Pb
O O O

F.O P Sz
O O O

O O O

O O O

26 Si26 26

P2 - Si27 P27

Sn (BLOCK) Sn (BLOCK)

Fig.5

U.S. Patent Mar. 26, 1991 Sheet 5 of 15 5,003,596

B sees bass ess, esse so-60
2 6

B B2 B3 B4 B5 -6. B7 B8 B9 Bio
En

1--
C

EnB6.Enocenenessenegeneio
E

(

nb

65

b1 b2bs b4 b5 -66 64
Enc

\--

--
Encblene (b2)enc (b3)Eno (b4) Encb5)- 67
--

End
68 69

End (Enc(b1))nd (Enc(b2)end (Enc (b3) xor

O 7

be b7 be be blo

EnslebelsaesenB4Essenseles7enesses Ensio
Fig.6

U.S. Patent Mar. 26, 1991 n Sheet 6 of 15 5,003,596

B6 B7 B8 B9 BO

42.

142
3-H

3-H
Eno (B6) Eno (87) Eno (B8) Eng(B9) Eno (BIO)

Fig. 7

U.S. Patent Mar. 26, 1991 Sheet 7 of 15 5,003,596

BR =

PERMUTATION
TABLE
MEMORY

| - VARABLE KEY ADDON
KEY
TABLE - ENCLAVE
MEMORY 8 TABLE

24 MEMORY

VARIABLE SUBSTITUT
S-BOX

ION

36

Fig. 8 OUTPUT (CIPHERTEXT)

U.S. Patent Mar. 26, 1991 Sheet 8 of 15 5,003,596

BB2B3B4B5Bs B7 B889 Bio
33O Fig. 7

U.S. Patent Mar. 26, 1991 Sheet 9 of 15 5,003,596

7O

72 B B2 B3 B4 B5 B6 87 Iss B 9 Bio
18O

BC P

{>{e1(3)(3)(3)(3)(3)(31(3)(9
WZXOR MASK2R No No No No | No | No No | No No | No

I78- YES YES YES YES YES YES YES YES YES YES

xOR

HT:
His
Hitle Hi ...His

1742

KEYw

||||||||||||ref Hep, Kwo

b b2 b3 b4 b5 be b7 b 8 be bro
82

Fig. IO

U.S. Patent Mar. 26, 1991 Sheet 10 of 15 5,003,596

3.
S. -

f ano

c
L O

N 9. O On
N U O)

s -

3. Con U out up S
am CN

9 e 9 H

H s

s
|| || :

e J CN
O

9

9

9

U.S. Patent Mar. 26, 1991 Sheet 11 of 15 5,003,596

S-BOX
AND S-BOX

MEMORY

MASK
TABLE
MEMORY EN CLAVE

TABLE
MEMORY

PERMUTATION
TABLE

KEY MEMORY
TABLE
MEMORY O8

246
Fig. 2 (IITITIGGtput (PLAINTEXT)

U.S. Patent Mar. 26, 1991 Sheet 12 of 15 5,003,596

O

(s 8 CN

3 c. -
r u)

u is NO
d O O e

N. O ch L
X o C) On

U |

CC U C LL CO - O O
CO
CN

9

9

CO

H III G

H H
M)

9

9

9

U.S. Patent Mar. 26, 1991 Sheet 13 of 15 5,003,596

27O

EnB EnB2EnB3EnB4 EnB5Ense EnB7EnB8EnB9 EnB to

274-be b7 be be bio
276

N-- 272
- End

--
28O

Y-- Ec
1--

a is a is -28?

284 EnbendeeenbenderEntendee) Enb(Eng(B9)enb(Eng(B1O) C

Ehb 278

288

292 Fig. 4

U.S. Patent Mar. 26, 1991 Sheet 14 of 15 5,003,596

Eno (B6) End (87) End (B8) Eng (B9) Eng(BIO)

H d

| | | 42

253

42

s

534

315
a -H e

it
Fig.15

BO

U.S. Patent Mar. 26, 1991 Sheet 15 of 15 5,003,596

3OO

3O2 b b2 b3 b4 b5 b6 b7 be be bio
3O

d
3O4. {}{e1(3){}{}{e1(){}{}{9

NO NO NO NO NO NO NO NO NO NO
3O8. YES YES YES YES YES YES YES YES YES YES

we His His ... His
Hiei. His

at HHHHHe kwe |||||||||||||IT's ||||||||||||||| XOR

B1 B2 B3 B4 B5 B6 B7 B8 B9 Bio
312

Fig. 16

5,003,596
1.

METHOD OF CRYPTOGRAPHICALLY
TRANSFORMING ELECTRONIC DIGITAL DATA

FROM ONE FORM TO ANOTHER

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to cryptography and, more

particularly, to a system for protecting stored and trans
mitted data from cryptanalytic attack.

2. Description of the Prior Art
The use of various cryptographic systems for con

verting secret or sensitive information from an intelligi
ble form to an unintelligible form is well established.
The intelligible form of the information or data is called

10

15

"plaintext" and the unintelligible form is called "cipher
text". The process of converting from plaintext to ci
phertext is called "encryption' or "encipherment" and
the reverse process is called "decryption" or "decipher
ment". Most cryptographic systems make use of a secret
value called the key. Encryption and decryption are
easy when the algorithm and the key are known, but
decryption should be virtually impossible without the
use of the correct key. The process of attempting to find
a shortcut method, not envisioned by the designer of the
algorithm, for decrypting the ciphertext when the key is
unknown is called "cryptanalysis'.
Cryptography has a long history, tracing its roots

back to at least the time of Julius Caesar who employed
a substitution cipher in which each letter in the plaintext
was replaced by the third later letter in the alphabet.
Thus, Julius Caesar employed a linear substitution ci
pher which used the number three as the secret key.
Non-linear substitutions, in which the alphabet is scram
bled or mixed are also well-known. However, simple
substitutions, whether linear or nonlinear, are relatively
easy to attack when only a few sentences of the cipher
text are known. Indeed, William Legrand in Edgar
Allan Poe's short story "The Gold-Bug" was able to
locate a fortune in buried gold and jewels by a cryptana
lytic attack on Captain Kidd's message.
Today's businesses require a much more sophisticated

and secure encryption system to protect private mes
sage transmissions from computers, facsimile machines,
banking machines, and the like. The most secure key
based system in the history of cryptography is the one
time tape or one time pad. In this system, the key is as
long as the message to be encrypted and is simply added
(modular arithmetic) to the message. The key is used
only once and is randomly derived. Although this
method is secure, it is inefficient to create new keys for
every block of information transmitted and then se
cretly distribute these keys. Therefore, the one time
tape is seldon if ever used in most applications.
The goal of modern cryptography is to create an

encryption system which may not be compromised
through current cryptanalytic techniques, or the benefit
of breaking the system is not worth the effort required
to penetrate the system. In other words, the goal is to
design a system which is very difficult to break with
current cryptanalytic methods. This is in contrast to the
one time pad technique which is impenetrable in both
theory and in practice. The one time tape should remain
cryptographically unbreakable despite advances in the
art of cryptanalysis. However, other prior art systems
can and will be broken in time.
Modern encryption systems generally use a short key,

such as a key which is eight characters in length. A

20

25

30

35

40

45

50

55

60

65

2
good example of a modern system is the Data Encryp
tion Standard (“DES") which was developed by IBM
in the early 1970's and which was adopted by the
United States Bureau of Standards as the standard en
cryption system for directed to the DES include U.S.
Pat. Nos. 3,958,081 and 3,962,539. The Data Encryption
Standard is a block type of cipher in which a portion or
block of the data to be encrypted is permutated with a
prearranged permutation table, modified with a key,
and then substituted with a predetermined substitution
table. This process is repeated numerous times in what
are referred to as rounds. Permutation is also referred to
as "transposition' and is a common cryptographic func
tion in which the positions of letters in a message are
scrambled in accordance with a predetermined set of
directions.
Other modern encryption systems have attempted to

simulate the key generation process of a one time pad by
using pseudo-random generators which creates a long
series of keys having the statistical property of random
ness. Patents on such systems include U.S. Pat. Nos.
3,700,806 and 4,369,332. The receiver on the other end
of the transmission would have a pseudo-random gener
ator generating keys and using them to decrypt the
transmitted ciphertext. Thus the system can change
keys as often as desired, even changing the key for
every block to be encrypted. The use of pseudo-random
generators has greatly enhanced the strength of many
systems, but it does not perfectly create a one time pad.

In the cryptanalysis of non-military encryption sys
tems, the following assumptions are generally made: (1)
The cryptanalyst knows the encryption system and
tables used. If a pseudo-random generator is used, it is
also assumed to be known. (2) The cryptanalyst does
not know the key. Items 1 and 2 together are generally
referred to as Kerckhoff's assumption. (3) The cryptan
alyst has a large quantity of previously transmitted
plaintext. (4) The cryptanalyst has a large quantity of
previously recovered ciphertext corresponding to the
plaintext.
A cryptographic system must demonstrate adequate

strength under the above conditions. A pseudo-random
generator system does not meet all of the criteria for a
one time tape. If a pseudo-random generator is used, the
relationship between the keys generated would then be
given. Although the cryptanalyst may not know the
string of keys output (if the generator were key based),
he or she would still know the relationship of the key
series as it is stated in the pseudo-random generator
algorithm. In addition, pseudo-random generators must
also be provided with a "seed" value. This, in essence,
is another key which has to be generated and distributed
for the system. The Data Encryption Standard, with its
predetermined permutation and substitution tables and
predetermined ordering of the use of these tables, is also
subject to cryptanalytic attack. Although the Data En
cryption Standard algorithm is a strong encryption
system because it is quite complex, it is not impervious
to attack by mathematical analysis.
Another technique employing some of the features of

a one time pad uses a key table. In this technique, a table
including numerous, predetermined keys is included in
the encryption system. The keys are then each changed
by the secret key. One example of this method can be
seen in U.S. Pat. No. 4,776,011. This technique does not
perfectly simulate the one time pad for the same reasons
the pseudo-random generators do not. The original key

5,003,596
3

table gives the relationship of the keys. Also, in such
systems, the order in which the keys are chosen is stated
by the system's algorithm, the key combinations Se
lected may be repeated, and without an initializing vec
tor, the same key table will always be used until a new
secret key is provided. The invention disclosed herein
uses a key table in a unique methodology to overcome
these obstacles.
Another method for creating a strong theoretical and

practical encryption system is to use a one time func
tion. In this method, every data block encrypted is
enciphered by a different cryptographic function com
bination. In other words, the tables used in the encryp
tion process are variable and a different combination
will be chosen by each data block.

Variable functions have also been done in prior art.
One example is in U.S. Pat. No. 4,751,733 which in
cludes the use of variable substitution. This patent has
many limitations: the patent provides encryption specif
ically for binary words; the substitution tables must be
set up and operate in close relationship to the binary
arrangement of the secret key; control codes, which
form a key complement or auxiliary key, are needed to
direct the substitution process; the method is specifi
cally a substitution-permutation enciphering device; the
method does not provide for a variable permutation or
other functions; and the method does not provide for an
initializing vector which is necessary for one time tape
simulation.

It is, therefore, an object of this invention to over
come the weaknesses found in other systems and pro
duce a system which simulates the one time pad process
yet requires only a single key. It is another object of the
present invention to provide an encryption system
which cannot be compromised in theory or in practice,
and which allows for a perfect simulation of a one time
pad system. It is also an object to create a cryptographic
system which provides a one time method approach in
that every unique block of data is functionally trans
formed uniquely. Such has not been accomplished by
the prior art and, as a result, the system would offer
stronger cryptographic measures against attack. It is
also an object of the present invention to provide a
secure encryption system which is flexible enough for a
variety of applications, such as file storage, data trans
mission, telecommunication coding and the like. It is
also an object to provide an encryption system which
permits the use of the block cipher format and provides
complete inter-symbol dependency therein.

SUMMARY OF THE INVENTION

Accordingly, I have developed a cryptographic sys
tem which includes the creation of a key table from a
single key such that the relationship between the keys in
the key table cannot be determined even if the system
implementation is known. This is accomplished through
the use of variable functions in which the determinants
are changed by the variable function chosen by the
determinant. Thus, the functions used in creating the
key table do not have to be one-to-one functions. The
determinants are based on the key. From the key table,
four blocks of bytes of additional key based determi
nants are formed which are called masks. These masks
are formed from the keys. The original key does not
exist in either the key table or the mask table.
The system in accordance with the preferred embodi

ment of the present invention uses the key table in a
multiple round encryption process. Thus, every possi

O

15

20

25

4.
ble plaintext combination would be encrypted with a
different key combination. The keys chosen from the
table for a key addition operation are a function of the
plaintext, the current state of the ciphertext, and the
mask values. Therefore, the order in which the keys are
chosen is not predetermined or patterned. The system
also selects the other encryption functions, including
permutations and substitutions, by the plaintext, current
state of the ciphertext and the mask values. In this way,
every block will be encrypted with a different combina
tion of permutations and substitutions.
The cryptographic system introduces a function

hereinafter referred to as the enclave function. This
function also operates on lookup tables and creates
complete inter-symbol dependency on the block of
bytes. The particular table used with the enclave func
tion is determined only by the mask values. In this way,
every block will undergo the same enclave combina
tions. However, the combination will still be unknown
to an attack since the combination chosen is determined
from the mask values which were derived from the
unknown key.

After the information passes through the predeter
mined number of rounds of permutations, key additions.
enclaves and substitutions, it can be transmitted or
stored. Decryption is essentially accomplished by re
versing the order of operations with the inverse func
tions of the substitutions, enclaves, key additions and

30

35

40

45

50

55

60

65

permutations. The key additions are the same as their
inverses.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart of the encryption of a length of
plaintext in accordance with the present invention;
FIG. 2 is a flow chart of the table initialization step

shown in FIG. 1;
FIG. 3 is a block diagram showing the creation of

each entry in the key table;
FIG. 4 is a diagram representing an example of one

entity in a permutation table;
FIG. 5 is a schematic representation of an example of

one entry in a substitution table;
FIG. 6 is a block diagram of the enclave function

used in the present invention;
FIG. 7 is a block diagram of the autoclave function

used in the enclave function of FIG. 6;
FIG. 8 is a flow chart of the overall encryption pro

cess of a block of plaintext in accordance with a pre
ferred embodiment of the present invention;
FIG. 9 is a block diagram of the variable permutation

used in the encryption process of FIG. 8:
FIG. 10 is a block diagram of the variable key addi

tion used in the encryption process of FIG. 8:
FIG. 11 is a block diagram of the variable substitution

used in the encryption process of FIG. 8:
FIG. 12 is a flow chart of the overall decryption

process of a single block of ciphertext which was en
crypted by the process shown in FIG. 8:

FIG. 13 is a block diagram of the inverse variable
substitution used in the decryption process of FIG. 12;

FIG. 14 is a block diagram of the inverse enclave
function used in the decryption process of FIG. 12;

FIG. 15 is a block diagram of a portion of the auto
clave function used in the inverse enclave function of
FIG. 14;
FIG. 16 is a block diagram of the inverse variable key

addition used in the decryption process of FIG. 12 and

5,003,596
5

FIG. 17 is a block diagram of the inverse variable
permutation used in the decryption process of FIG. 12.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

In a preferred embodiment, the cryptographic system
of the present invention is operated in a block cipher
format in which small chunks of the plaintext data,
referred to commonly as blocks, are encrypted and
decrypted at one time. Preferably, the encryption and
decryption takes place in a multiple round block type of
format. However, it is to be understood that the inven
tion of the present application can also be used in other
cryptographic systems, such as stream ciphers and the
like, and that multiple rounds may not be employed.
However, multiple rounds will strengthen the system
considerably.
The encryption system of the present invention uses,

in a preferred embodiment, modular arithmetic which is
a cyclic mathematical function based on a particular
whole number referred to as the modulus. Counting is
done by successive incrementing until the number one is
less than the modulus reached, and then starting over
again with zero. An example of modular 3, compared
with whole numbers, can be shown as follows:

Whole: 0 1 2 3 4 5 6 7 8 9 10
Mod 3: 0 2 O 2 O 2 O

Thus, 10 modular 3, Which is commonly abbreviated as
10 mod 3, is equal to 1. Modular arithmetic can more
easily be done by successively subtracting the modular
from the number in question until the result is between
zero and the modulus minus 1. For example: 10-3=7;
7-3= 4; and 4-3 = 1. Thus, 10 mod 3 since the last
Subtraction resulted in an answer between 0 and 2, with
2 modulus 1. The general format for a modular arithme
tic function is (whole number) mod (modulus) = whole
number smaller than the modulus.
As shown in FIG. 1, the system commences at the

start, reference 10, and then control passes to reference
12 for the initialization of various tables in memory. As
will be explained hereinafter in more detail, a number of
tables are supplied to the system and a number of tables
are created within the system. This takes place initially
before any plaintext or ciphertext is encrypted or de
crypted. Control then passes to reference 14 where the
first block of plaintext is selected. Although FIG. 1 is
shown in connection with the encipherment of blocks
of plaintext, the same steps would also be followed for
decrypting selected blocks of ciphertext. Control then
passes to reference 16 where the selected block of plain
text is encrypted in accordance with the cryptographic
system of the present invention. If there is more plain
text left to be encrypted, as determined by query 18, the
next block of plaintext is selected at reference 20 and the
next block is encrypted. If there is no more plaintext,
then the system stops operation at reference 22.
The step of initializing the tables in memory is shown

in more detail in FIG. 2. A permutation table, an S-box
table and an enclave table are initially loaded into the
system's memory at reference 30. The permutation table
includes a plurality of addressable entries which dictate
in a particular fashion how the position of the bytes in
the block of data undergoing encryption will be scram
bled, or will be descrambled for decryption. This is a
commonly used cryptographic technique. The S-box
table is an arrangement for a plurality of substitution

10

15

20

25

30

35

40

45

50

55

60

65

6
entries which dictate, as directed by a particular entry,
how the actual values of each byte of the block under
going transformation will be changed to another value.
While this could be included in the form of a standard
substitution table, the S-box table arrangement is more
efficient computationally and is well-known in the field
of cryptography. The enclave table, loaded into the
memory at reference 30, will be explained hereinafter in
more detail.
The initial key is then loaded into the system at refer

ence 32. For purposes of this application, a key is any
secret value or data block which is not expressly stated
or set forth in the system implementation, algorithm or
tables, but is installed or loaded into the system to direct
the cryptographic process. Basically, a key is a secret
value or values upon which the cryptographic process
acts, but is not a part of the algorithmic implementation.
The system then decides at query 34 whether an initial
izing vector is included. The use of an initializing vector
is common in the field and is typically used when trans
mitting data across telephone lines and the like. The
initializing vector is sent across the lines before the
enciphered data and is used in further decryption of the
data. As shown at reference 36, the key is combined
with the initializing vector in an Exclusive OR opera
tion, in a bit by bit manner, to modify the initial key
which is then used at reference 38 to generate the key
table. Rather than use an Exclusive OR function, the
values of each byte in the key could be added to the
value of each byte in the initializing vector to modify
the initial key. These are both standard techniques in
cryptography for using an initializing vector in connec
tion with a key. If no initializing vector is used, then
control passes directly to reference 38 where the key
table is generated from the unchanged initial key. Once
the key table is created, then control passes to reference
40 where the mask table is generated from the entries
generated in the key table. The particular processes
used to generate the key table and mask table entries
from the initial key are explained hereinafter in detail.

In accordance with a preferred embodiment of the
present invention, the block size of the data undergoing
cryptographic transformation is selected to be ten bytes
long, with each byte including eight digital bits therein.
Seven of the bits in each byte are used for the data
values and the eighth bit is a parity bit as is well-known
in the field. In the preferred embodiment here, the key
has been selected to be the same length as the block of
data undergoing encryption and decryption. However,
the key could be other lengths, if desired. It is necessary
that the key be long enough to make guessing the key
by an exhaustive attack very difficult. When using
seven value bits in each byte, it is preferred that each
key include between eight and twenty bytes. While key
lengths longer than twenty bytes can be used, it would
make the computation in the cryptographic system
much more difficult and time consuming and would
increase the length of the various tables used in the
system, correspondingly increasing the memory space
required. The same considerations are applicable in
selecting the block of plaintext undergoing encryption,
particularly when small blocks of information will be
sent through the system. The block size should include
an even number of bytes if the enclave function of the
present invention is used. However, the block size could
be an odd number of bytes if the enclave function was
not used.

5,003,596
7

A major element of the cryptographic system of the
present invention is that the particular permutation,
substitution or enclave table used in performing a par
ticular cryptographic function on the data is a function
of certain values or elements in the data undergoing
transformation. This aspect of the present invention is
being referred to as a variable function, which is any
function where two or more possible choices exist.
This aspect of the present invention is also used ini

tially in generating, from an initial key, a key table
which is later used in the encryption/decryption pro
cess. Generally, one or more elements from the key are
selected and the result of a predetermined mathematical
function is used to choose a variable function table. The
function is performed on the present state of the key in
accordance with the selected table to generate a new
key. The result of the mathematical function could also
be used to pick, from many available possibilities, the
particular function used in conjunction with a particular
table. In the preferred embodiment of this invention, the
particular type of function is preset and only the table
used in conjunction with that function is selected by
means of the data undergoing encryption/decryption.
A particular arrangement for producing the elements

of the key table, which uses substitution, permutation
and enclave functions, is set forth in FIG. 3. The ten
bytes of the key undergoing transformation are shown
in element 50 as Kn1-K 10. In selecting the substitution
table used, the values of the last five bytes of the key are
added together using modular arithmetic at element 51
to generate a digital number stored in memory register
Y at element 52. The modulus of the modular arithmetic
used at element 51 would be determined by the size of
the substitution table used in the system. In a preferred
embodiment, the substitution table would include 32
tables for 128 byte values and, therefore, the arithmetic
used at element 51 would have a modulus of 32. In an
example included hereinafter in this application, the
substitution table has, for ease of understanding, only 16
tables and element 51 would be modular 16. While FIG.
3 shows the addition of the values in the last five bytes
of the key undergoing transformation to generate the
number used in selecting the substitution table, it is to be
understood that any combination of the ten bytes in the
key, including all ten, could be used to generate the Y
value at element 52.

In selecting the permutation table used in FIG. 3, the
first five values of the key are added together using
modular arithmetic at element 53 to generate a digital
number stored in memory register X at element 54.
Similar to the substitution table calculation, the modular
arithmetic used at element 53 for generating the permu
tation table X would be dependent upon the size of the
permutation table used in the system. In a preferred
embodiment, there are 128 entries in the permutation
table and, therefore, the modular arithmetic at element
53 would be modular 128.
The value Y generated at element 52 is used to select

the substitution table which is used to modify the cur
rent state of the key. The key is then substituted in
accordance with this table. Thereafter, the value X
generated at element 54 is used to select the particular
permutation table. The key, which previously under
went a substitution operation, is now permutated in
accordance with the selected table. This operation,
which transforms key to an intermediate state referred
to as PSK, is set forth in element 55 in FIG. 3. The
transformed key, after undergoing first the substitution

10

15

20

25

30

35

40

45

50

55

60

65

8
and then the permutation, is represented in FIG. 3 as
element 56, including bytes PSK1-PSK, 10.
A sample permutation table entry is shown in FIG. 4.

The position of the eight bit bytes at the top of FIG. 4
will be scrambled as directed by the various arrows to
the new position shown at the bottom of FIG. 4. Work
ing from the top to the bottom gives an encryption of
the data. To decrypt the data, the positioning is rear
ranged from the bottom to the top to recapture the
initial arrangement of the data. This is a standard tech
nique used in many cryptographic systems and need not
be explained in further detail in this application. Like
wise, a typical entry in the substitution table is shown in
FIG. 5. If a particular plaintext value appears in any of
the bytes of the data undergoing transformation, then
the substitution table used will direct that the plaintext
value be substituted by a new value. For instance, if the
plaintext value is Po, then, in accordance with the table
shown in FIG. 5, it will be substituted by the new value
of S. Working backwards through the substitution
table, the encrypted data can then be decrypted to re
capture the original plaintext values. Once again, this is
a standard cryptographic technique and need not be
explained in further detail. It must be understood that
the particular arrangements shown in FIGS. 4 and 5 are
only representative of the many possibilities of permuta
tion and substitution table entries and that many other
entries would be included in the tables used in the cryp
tographic system of the present invention. .

In FIG. 3, the intermediate state of the key at element
56 is further modified in accordance with a newly de
veloped function, referred to as an enclave function by
the applicant. The enclave process is also a variable
function in which certain values of the data undergoing
transformation are used to generate a number which in
turn is used to select which of a plurality of enclave
tables will be used to perform the further transforma
tion of the data. In the embodiment shown in FIG. 3,
certain values of the intermediate state of the key in
element 56, bytes 3, 4, 5, 6 and 7 as shown, are added
together using modular arithmetic at element 57 to
create a digital number identified as Z and stored in
memory register Z in element 58. In a preferred em
bodiment, the enclave table includes 32 entries and,
accordingly, the arithmetic performed at element 57
would be modular 32. Thereafter, the intermediate state
of the key is further transformed according to the par
ticular enclave table selected and this transformed key is
entered into the key table at element 59. The enclave
function will be described in detail hereinafter in con
nection with FIGS. 6 and 7.

In accordance with the notation used in the present
application, "Key' is used to represent the initial key.
The initial key is used to generate the first key in the key
table, which is identified as Keyo. Keyo is stored in the
key table and is then used to generate the next entry in
the key table, namely, Key 1. Keyi is created from Keyo
by following the same steps set forth in FIG. 3 for gen
erating Keyo from the original key. The remaining keys
in the key table are generated in turn from the immedi
ately preceeding key until the key table is filled. The
generation of a key from its predecessor in the key table
is represented as element 59 in FIG. 3 where Key is
used to generate Keyn.
The number of entries in the key table should be a

factor, or divide evenly into the alphabet space. In the
preferred embodiment described herein, the alphabet
space is 27 or 128. If the number of entries is not a factor

5,003,596
9

of the alphabet space, then the statistical chance of
certain keys being used is greater than other keys. This
discrepancy could aid a cryptanalyst and should be
avoided. The maximum number of entries in the key
table is the size of the alphabet space and the maximum
has been used in the preferred embodiment.

In general, each key in the key table is generated as a
result of a variable function performed on the previous
key, with the particular variable function determined by
information extracted from the prior installed or gener
ated key. The initial key would be the installed key and
the generated keys have been referred to as Keyo, Key 1,
etc. In this manner, the key table does not include the
initial secret key and, therefore, it is impossible to solve
for the initial key from knowledge of information in the
key table. As will be explained hereinafter in more de
tail, a different set of keys will be selected in each round
of the encryption and this makes it impossible to search
for or solve mathematically for one key used repeti
tively. This simulates a one time tape when an initial
izing vector is used with every transmission in connec
tion with the initial key. Also, knowing one key in the
key table cannot give the attacker the previous key
since a cryptanalyst cannot work backward through the
key table. Therefore, this arrangement is much better
than a pseudo-random key generator.

It must be noted that the arrangement set forth in
FIG. 3 is just one possible implementation of the present
invention. There are almost an infinite number of varia

O

15

20

25

tions possible without changing the spirit or scope of 30
the invention. Any process using the initial key or an
installed data block to choose a variable function to
create a key table such that the variable function table
chosen cannot be determined from the new key created
would fall within the scope of this invention.
FIG. 6 represents a block diagram of the enclave

function used in the present invention. The enclave
function is used both in generating the key table in FIG.
3 and is also used in the encryption process shown here
inafter in FIG.8. The block undergoing transformation
is referred to as element 60 in FIG. 6. The block is
divided into two portions, namely, a first or left half
block 61 including the first five bytes and a second or
right half-block 62 including the last five bytes. Other
arrangements for dividing the block into half-blocks can
be used, including using the even bytes for the first
half-block and the odd bytes for the second half-block,
and other arrangements. The block undergoing trans
formation must include an even number of bytes for the
enclave function.
An autoclave function is a known technique in cryp

tographic systems for changing a block by a function
performed on itself. The enclave process of the present
invention uses an autoclave type of function in conjunc
tion with other manipulations on the data block to pro
vide complete inter-symbol dependency throughout the
entire ten byte block. Complete inter-symbol depen
dency is achieved when every byte of the block is a
function of every other byte of the block and itself.

In the arrangement shown in FIG. 6, the right half
block 62 is transformed by an autoclave function re
ferred to as Eng to a new data block referred to as ele
ment 63. The particular autoclave function used at Ena
will be described hereinafter in more detail in connec
tion with FIG. 7. The right half-block at element 63
then undergoes a second autoclave transformation, re
ferred to as Ent, to generate the half-block at element
64. This half-block is then combined by a bit by bit

35

40

45

50

55

60

65

10
Exclusive OR function with the unchanged left half
block 61 at element 65 to generate a new left half-block
at element 66. The left half-block at element 66 then
undergoes an autoclave function Enc to generate a trans
formed left half-block at element 67. Thereafter, the left
half-block in element 67 undergoes a subsequent auto
clave transformation End to generate a modified left
half-block at element 68. Then the left half-block in
element 68 is combined by an Exclusive OR function
with the previously transformed right half-block at
element 64. This Exclusive OR function generates a
new right half-block at element 70. Then the left half
block at element 68 is joined to the right half-block at 70
to create an entire block at element 71 which has under
gone the enclave function of the present invention.

After the right half-block 62 has undergone the two
autoclave functions in accordance with Ena and Enb, the
right half-block has achieved complete inter-symbol
dependency within itself. When the left half-block 61
and the current right half-block 64 are combined by an
Exclusive OR function at element 65, the left half-block
is completely inter-symbol dependent with the right
half-block. When the left half-block at element 66 is
then transformed by the two autoclave functions Ene
and End, the left half-block at element 68 will be con
pletely inter-symbol dependent with itself and with the
right half-block. Therefore, the left half-block has
achieved complete inter-symbol dependency with the
entire ten byte block. After the right half-block at ele
ment 64 is combined by an Exclusive OR function with
the current left half-block at element 69, the right half
block is entirely inter-symbol dependent on the entire
ten byte block. When the left half-block at element 68
and the right half-block at element 70 are merged to
gether to form the complete block at element 71, every
byte of the block is a function of every other byte of the
block and of itself.
The particular autoclave function used in the enclave

function shown in FIG. 6 is a process where the element
or byte in the half-block undergoing transformation is
added to two other elements in the half-block. This
process is repeated until each element in the half-block
has been so modified. To create the complete inter-sym
bol dependency within each half-block, it is necessary
that at least two elements be added to the element being
changed. In addition, this autoclave process is carried
out twice on the entire half-block to insure that all of the
bytes in the half-block are functions of themselves and
of every other byte. Ena, Enb, Enc, and End are repre
sented by a plurality of enclave tables, each of which
includes an entry a, an entry b, an entry c and an entry
d. A sample table En is set forth below:

Ena Enb Enc End
3 15 5 4 3 4 13 3 4 5
53 4 23 1 3 25 52
42 425 152 13
42 3 2 2 3 4. 254

253 5 4 S4 32

Each sub-table has five columns and the autoclave
function is performed in five steps from top to bottom.
The height of the column of each of the sub tables must
be equal in length to the half-block undergoing transfor
mation. In the preferred embodiment, the height of the
columns are five since the blocks are ten bytes long and
the half-blocks are five bytes long. Every column must

5,003,596
11

include a number signifying every byte in the half
block. In the preferred embodiment, the numbers 1-5
designate the bytes since there will be five bytes in each
half-block. Every byte must be accounted for in every
column. The row length must be greater than one-half 5
the half-block length and every row must contain a
distinct numerical value between one and five. In other
words, none of the numbers one through five should be
repeated in any row of a sub-table. The total number of
tables En should be a factor of the encryption space. In
summary, the vertical rows of each sub table of En must
have a different number from one through five and each
horizontal row must all have different numbers from
one through five. In addition, each of the second and
third elements of the sub-table in a particular row must
be different from the first entry. The first entry (i.e., in
the first row) gives the identity of the byte of the block
undergoing transformation and the second and third
entries (in the second and third rows) represent the
bytes which are arithmetically joined to the byte under
going transformation to come up with the new value.

This autoclave function can be represented better in
connection with FIG. 7 which shows the transforma
tion of the right half-block in accordance with the spe
cific sample table Enset forth above. The first entry in
Eg is "3 l 5" which means that the third byte of the
half-block (i.e., byte 8 or B8) is added to the value of the
first byte (B6) and the fifth byte (B10) to generate the
new value of the third byte (B8). Modular arithmetic for

10

15

20

25

each addition is used in accordance with the size of 30
alphabet space. Here, modular 128 would be used in the
arithmetic step since the alphabet space is 27 or 128 as
determined by the seven data bits in each byte in the
preferred embodiment. The next entry in Eng is "5 34'
which means that the fifth byte (B10) is added to the
third byte (B8 which had previously been transformed)
and also to the fourth byte (B9). The third entry is "42
1", which means that the fourth byte (B9) is added to
the second byte (B7) and the first byte (B6). The fourth
entry, “l 42', instructs that the first byte (B6) is added
to the fourth byte (B9) and the second byte (B7). The
fifth entry in table Eng is "25 3' which means that the
second byte (B7) is added to the fifth byte (B10) and the
third byte (B8) to generate the new second byte (B7).
As discussed above, the autoclave function is repeated
with another table, Enb, to create complete inter-symbol
dependency within the particular half-block" undergo
ing transformation. Ena, Enb, Enc and End could all be
identical to each other, but it is better if each of the
sub-tables within a particular enclave table En are differ
ent from each other.
The particular enclave table Enselected is determined

in accordance with a number generated previously
through an arithmetic function on the data undergoing
transformation. In connection with the creation of the
key table, the enclave table selected is determined by
the number Z which is generated at element 58 in FIG.
3. The notation "n' in connection with the enclave
process in FIG. 6 is to be distinguished from the nota
tion “n” used in connection with generating the entries
of the key table in FIG. 3.
The last step shown in the initializing routine set forth

in FIG. 2 is the creation of the Mask table at step 40.
The Mask values are determinants which are used in the
encryption and decryption process to aid in selecting
particular entries within tables to perform a transforma
tion on the data. The function of the Masks, which will
be apparent later, is to add another distinguishing factor

35

40

45

50

55

60

65

12
so that a cryptanalyst cannot work backward through
the cryptographic algorithm and calculate the original
key used in the system.

Generally, the Mask values are the arithmetic result
of two or more values from the key table or the original
key. The preferred embodiment contains four Mask
values with a notation of Mask where n can be from
one to four. The maximum range for n is equivalent to
the number of variable functions included in the crypto
graphic system. In the preferred embodiment, the sys
tem includes permutation, key addition, enclave, and
substitution variable functions and, accordingly, the
maximum n for the Masks will be four. Each Mask table
entry is a block of ten bytes. Therefore, each of these
bytes can be addressed as Maski, with b ranging from
one to ten. In the preferred embodiment, the Masks are
created as follows: The first byte in Mask1, referred to
as Mask11, is generated by summing the values of the
first byte in the first 32 keys of the key table. These
values are summed up using modular arithmetic, herein
modular 128, as determined by the alphabet space. The
subsequent bytes of the first Mask are each in turn gen
erated by summing up the corresponding byte in each of
the first 32 keys in the key table. The second Mask,
referred to as Mask2, is generated by a similar summa
tion of the bytes in the next 32 keys in the table, i.e.,
Key32 . . . Keys3. Similarly, the third Mask is created by
operations on the next 32 keys in the key table, namely,
Keys4 through Key95. Lastly, the fourth Mask is created
by using Key96 through Key 127. The Mask creation can
be represented mathematically by the following equa
tions (with 1 less than or equal to b which is less than or
equal to 10):

w

MASK1, b = KeyOb-i-Key 1.b -- . . . --Key31,b

MASK2, b = Key32,b-i-Key33.b -- . . . + Keyb3b

MASK3, b = Keys4b.--Keyes, b+... + Key95.h

MASK4.b-Key96b+. Key97,b-i-. . . + Key 127,b

Other options are available for creating the key table
and Masks. The Masks could be generated by just gen
erating four more keys in the key table creation and
using these four additional keys as the four Masks. Also,
the keys in the key table could be created by the same
method used in generating the Masks. Also, the key
table could be generated by making the third key a
function of the first two keys with or without the use of
variable functions after the first two entries in the key
table had been generated. Thus, succeeding keys can be
created by any of the previously generated keys.
A flow chart showing the encryption process in ac

cordance with the preferred embodiment of the present
invention is shown in FIG. 8. Since the preferred em
bodiment includes a number of rounds of encryption on
each block of data, the letter "R" will be used to desig
nate the round number hereinafter. Initially, the round
number is set to zero at step 100. Then the round nun
ber R is incremented by one at step 102. The data under
going encryption is represented by a ten byte block at
step 104. During the first round of encryption, the data
in element 104 will be the plaintext undergoing encryp
tion. In subsequent rounds, this data will be an interme
diate product different from the initial plaintext data but
not yet the final ciphertext output.

5,003,596
13

The data is initially subjected to a variable permuta
tion operation at step 106. As explained hereinafter in
more detail in connection with FIG. 9, an entry is se
lected from the permutation table memory 108 and a
value is selected from the Mask table memory 110 to
conduct the variable permutation. Control then passes
to step 112 where a choice component, referred to as
"C", is equated with the round number R. Control then
passes to step 114 where a first variable key addition
operation is carried out on the data. As explained here
inafter in more detail in connection with FIG. 10, a key
is selected from the key table memory 116 and a value
is selected from the Mask table memory 110 to carry out

5

10

the variable key addition. Control then passes to step
118 where the choice component C is set to a value one
greater than the round number. Following the opera
tion at step 118, control passes to query 120 where it is
determined whether the choice component C is equal to
11. If it is not, then control passes directly to step 122
where a second variable key addition operation is car
ried out on the data, using a key from the key table
memory 116 and using a value from the Mask table
memory 110. If following the addition at step 118, the
choice component C is equal to 11, then control is
passed to step 124 where the choice component is set to
a value of one. Then control is passed to the second
variable key addition operation at step 122.

Following the second variable key addition function
at step 122, control is passed to step 126 where a vari
able enclave is performed on the data. This variable
enclave function was described above in connection
with FIGS. 6 and 7, where it was shown that an entry
is selected from the enclave table memory 128. The
particular enclave table selected is determined by
Mask3R which is obtained from the Mask table memory
110. This can be represented by the equation
n = Mask3R where n is the enclave table memory se
lected for the operations in FIGS. 6 and 7. As will be
explained hereinafter in more detail, Mask was used in
connection with the variable permutation operation at
step 106, Mask2 was used in connection with the vari
able key additions at steps 114 and 122, and Mask4 will
be used in the subsequent variable substitution opera
tionS.

Control then passes to step 130 where the choice
component C is once again equated to the round num
ber R. Thereafter, the data undergoes transformation in
accordance with a first variable substitution at step 132.
As will be explained hereinafter in more detail, the
variable substitution uses a value from the Mask table
memory 110 and selects an appropriate S-Box table
from the S-Box and S-Box memory 134. Control then
passes to step 136 where the value of the choice compo
nent C is incremented by one. A decision is made at
query 138 as to whether the choice component is equal
to 11. If it is not, then control is passed directly to a
second variable substitution at step 140. If the choice
component after step 136 is equal to 11, then control is
passed by query 138 to step 142 where the choice con
ponent is set to a value of one. Thereafter, control is
passed to the second variable substitution at step 140.
Like the first variable substitution at step 140, the sec
ond variable substitution is described in more detail in
FIG. 11 and uses a value from the Mask table memory
110 and uses a table from the S-Box and S-Box memory
134 to transform the data.

Control thereafter passes to query 144 where it is
determined whether the round number has reached a

15

20

25

30

35

40

45

50

55

60

65

14
value of 10. If the round number has reached ten, then
the encryption process is completed and the ciphertext
is represented as an output at step 146. If the round
number has not yet reached ten, control is passed back
to step 102 where the round number is incremented by
one. Then all of the above identified steps, including the
variable permutation 106, the first variable key addition
114, the second variable key addition 112, the variable
enclave 126, the first variable substitution 132 and the
second variable substitution 140, are carried out.
The variable permutation of FIG. 8 is explained in

more detail in the block diagram in FIG. 9. The data
undergoing transformation is represented as bytes B1
through B10 at element 150. In order to select which
table in the permutation table memory 108 is used to
carry out the permutation, the values in the ten bytes of
the data are added together at element 152 to generate
a value stored in memory register Z at element 154. A
value is generated by combining in a bit by bit Exclusive
OR function the value in register Z generated at ele
ment 154 with Mask1R from the Mask table memory
110. This value is stored in memory register W at ele
ment 156. For example, during the first round of en
cryption, Mask1, would be used at element 156 togen
erate W by the Exclusive OR operation with Z. Since
there are ten rounds of encryption in the preferred em
bodiment, each of the ten values in Maski will be used
in turn during the encryption rounds.

Control then passes to element 158 where a standard
permutation is carried out on the block of data using the
directions from permutation table W, represented by
Pw. The block of data after it has been permutated is
shown in FIG. 9 at element 160 as bytes b1 through b10.
It is important to use all ten bytes of the data undergo
ing encryption to select the permutation table used for
the transformation since this renders it possible to de
crypt the same data by the same steps. If only some of
the bytes in the block were used to determine the per
mutation table used, then it would be impossible to
determine during the decryption process which permu
tation table was selected. Rather than combining Z with
Mask, R by an Exclusive OR operation to generate W, it
is also possible to sum the values of Z and Mask1R
modular arithmetic, to determine the permutation table
used. This is also true throughout the remainder of the
application where two digital values are combined to
gether using an Exclusive OR operation. While an Ex
clusive OR operation is computationally easier to in
plement on a digital computer, the same result could be
obtained in the present invention by merely arithmeti
cally summing the values rather than carrying out the
Exclusive OR operation.
The variable key addition function of the present

invention, as shown in steps 114 and 122 of FIG. 8, is
shown diagramatically in FIG. 10. Each variable key
addition, whether the first at step 114 or the second at
step 122, are identical except that the value of the
choice component C is one higher in the second vari
able key addition than in the first key addition, except
during the tenth round of encryption when the value of
the choice component C is set at one. Otherwise, the
steps followed in the variable key addition at step 114
and step 122 in FIG. 8 are identical as set forth in FIG.
10.
The particular key selected from the key table mem

ory 116 for the variable key addition is determined by
byte C (referred to as BC) and Mask2 R. This is shown
by element 172 in FIG. 10 where the value Z is equated

5,003,596
15

to BC and by element 174 where W is equated to Z
XOR Mask2.R. The value W is used to select the key
from the key table memory 116 for use during that
particular round of the variable key addition. The ten
bytes of Keyware shown as element 176 in FIG. 10.
Thereafter, every byte in the block of bytes in element
170 is combined by an Exclusive OR function with the
corresponding byte in Keyw through the series of Ex
clusive ORs at element 178. For example, B1 XOR
Key W1 generates b1. Likewise, B2 XOR Key W2 gener
ates b2. The only exception is that byte C (BC) in the
block undergoing transformation is not combined with
its corresponding byte in Key wbut remains unchanged
and becomes directly bC. This is represented by the
series of querys at element 180 associated with each
byte of the data undergoing transformation at element
170. If C is equal to the byte number, then that byte is
not combined with the corresponding key byte. The
block of data after it has undergone a round of the
variable key addition is shown as element 182 in FIG.
10.
The variable substitution for the encryption process

shown in FIG. 8 is shown in more detail in FIG. 11.
Similar to the variable key addition, the first variable
substitution at step 132 is identical to the second vari
able substitution at step 140 except that the choice com
ponent C is changed for the second variable substitu
tion. Otherwise, the steps followed in each are the same.
In the substitution process, the S-Box chosen Z is deter
mined by byte C in the data undergoing transformation
and Mask4.R. This is shown in FIG. 11 where Z is
equated to BC at element 192 and W is equated to Z
XOR Mask4R at element 194. The value of W generated
in element 194 is used to select the particular S-Box used
for the substitution at element 196. After the selection of
the S-Box, every byte of the block undergoing transfor
mation at element 190 is substituted with the chosen
value according to S-Box w, except for byte C (BC)
which remains unchanged during this round of transfor
mation.

It is important both in the variable key addition and in
the variable substitution that byte. C (BC) remains un
changed. In this way, it is possible to use the same trans
formation to work backwards in the decryption opera
tion. A series of querys at element 198 connected to
each byte of the block undergoing transformation in
element 190 show how byte C remains unchanged and
is passed directly and unchanged to the corresponding
output byte in element 200. For example, when the
choice component C is equal to 1, then B1 in element
190 would equal b1 in element 200. Otherwise, the re
maining bytes in element 200 will have values different
from the initial values in element 190 in accordance
with the substitution protocol set forth S-Box w. The
same technique could be used for selecting the permuta
tion table, i.e., use one of the bytes and leave that byte
unchanged.
The steps followed in decrypting a block of cipher

text is shown in FIG. 12. Since the decryption is essen
tially a backwards iteration through the encryption
steps followed in FIG. 8, the round number is initially
set at ten in step 210. The block of data undergoing
decryption is selected and is represented in element 212
as a block of ten data bytes. During the first round of
decryption, the data at step 212 will be the initial cipher
text. Control is then passed to step 214 where the choice
component C is set to a value one greater than the
round number. A decision is made at query 216 whether

10

15

25

30

35

40

45

50

55

60

65

16
the choice component is equal to il. If it is not, then
control is passed directly to step 218 where a first in
verse variable substitution is carried out on the data.
The inverse variable substitution is described in more
detail in FIG. 13. The first inverse variable substitution
218 uses data from the Mask table memory 110 and from
the S-Box memory 134. If query 216 determines that
the choice component C is equal to 11, then the choice
component set to one at step 220 and control then passes
to the first inverse variable substitution at element 218.
Control then passes to step 222 where the choice com
ponent is equated to the round number, following
which a second inverse variable substitution is carried
out at step 224.

. Subsequent to the second inverse variable substitu
tion at step 224, the data is subjected to an inverse vari
able enclave function at element 226. This function is
described in more detail hereinafter in connection with
FIGS. 14 and 15 However, it must be noted here that
Mask3R is selected from the Mask table memory 110
and that value is used to select the particular enclave
table memory used from the enclave table memory 128.

Control is then passed to step 228 where the choice
component is incremented by one and then a decision is
made at query 230 whether the choice component has
reached the value of eleven. If the choice component
has not yet reached a value of eleven, then control
passes to the first inverse variable key addition at step
232. If the choice component has reached the value of
eleven, it is reset at step 234 to a value of one and con
trol is passed directly to the first inverse variable key
addition at step 232. The first inverse variable key addi
tion uses data from the Mask table memory 110 and the
key table memory 116 to transform the data. This opera
tion is shown in more detail in connection with FIG. 16.
Control is then passed to step 236 where the choice
component is equated with the round number. Then the
data is subjected to a second inverse variable key addi
tion at step 238. Other than the difference of the values
of the choice component, the first inverse variable key
addition at step 232 is identical to the second inverse
variable key addition at step 238.

Control is then passed to the inverse variable permu
tation at step 240. The data is then subjected to a partic
ular inverse permutation using an entry from the Mask
table memory 110 and an entry from the permutation
table memory 108. The inverse variable permutation is
described in more detail in connection with FIG. 17.

Control is then passed to query 242. If the round
number for the decryption has reached a value of one,
then no further decryption takes place and the current
state of the data is output at step 244 as the plaintext
output. If the round number has not yet reached a value
of one, then the round number is decreased by 1 at step
246. Control is passed to step 212 for a further round of
decryption in accordance with the first inverse variable
substitution 218, the second inverse variable substitution
224, the inverse variable enclave 226, the first inverse
variable key addition 232, the second inverse variable
key addition 238, and the inverse variable permutation
240.
The inverse variable substitution is shown in more

detail in FIG. 13. The data undergoing decryption is
represented by bytes b1 through b10 in element 250.
The inverse substitution box (S-Box) chosen is deter
mined by bc XOR Mask4.R. This is represented in FIG.
13 where Z is equated to bC at element 252 and W is
equated to ZXOR Mask4R at element 254. W is then

5,003,596
17

used to select the particular inverse substitution box
(S'-Boxw) at element 256. Every byte in the block in
element 250 is then substituted in accordance with the
protocol of the chosen S-Box except for byte bC. The
result of the inverse variable substitution is a ten byte
data block B1 through B10 at element 260. The arrange
ment by which byte bC is not substituted is shown by a
series of querys 258 associated with each byte of the
data undergoing decryption in element 250. For exam
ple, in the first round of decryption, where R is ten, b10
is both used to select the S-Box used for the inverse
substitution and is also unchanged during the inverse
substitution. Since the tenth byte remained unchanged
during the final variable substitution carried out on the
data during the encryption process shown in FIG. 8, it
is possible to recreate and work backwards through the
encryption process through the ciphertext data. The
same is true for the inverse variable key addition of
FIG. 16.
The inverse variable enclave function is shown in

detail in FIG. 14 and in conjunction with the particular
autoclave function used in the inverse variable enclave
in FIG. 15. The steps carried out in FIG. 14 are essen
tially the inverse of the steps taken in the variable en
clave for encryption shown in FIG. 6. The block of data
undergoing decryption at element 270 is split into a left
half-block 272 and a right half-block 274. These two
half-blocks are combined by a bit by bit Exclusive OR
function at element 276 to produce a subsequent right
half-block 278. The left half-block at element 272 is first
transformed by an inverse autoclave function End to
left half-block element 280 and then is transformed by
an inverse autoclave function E to left half-block 282.
Right half-block element 278 is then combined through
an Exclusive OR function at element 284 with left half
block 282 to form the final left half-block element 286.
The right half-block at element 278 is first transformed
by an inverse autoclave function Ent, to right half-block
element 288 and then is transformed by an inverse auto
clave function Eng to the final right half-block at ele
ment 290. The left half-block element 286 and right
half-block element 290 are joined together to form the
final ten byte block at 292 which is the result of the
inverse enclave function.
A particular autoclave function used in the inverse

enclave of FIG. 14 is shown, for one example, in FIG.
15. In general, the enclave tables, as described above,
are used during the inverse autoclave function. How
ever, the entries are read from the bottom of each col
umn to the top and the byte undergoing transformation,
identified by the entry in the first row, has its value
reduced by the values of the other two bytes, identified
by the second and third rows in the enclave table entry.
An example of an inverse autoclave function used in the
inverse enclave is set forth in FIG. 15 for the same
autoclave function used in connection with FIG. 7. The
last entry in the enclave table used is used first for the
transformation in FIG. 15. Since this entry is "25 3”,
this means that the fifth byte (B10) and the third byte
(B8) are subtracted from the second byte (B7) to gener
ate the new value of the second byte. As in the enclave
function used for encryption, the arithmetic is carried
out by modular arithmetic. The next entry up from the
bottom in the enclave table used in FIG. 15 is "l 42',
which means that the fourth byte (B9) and the second
byte (B7) are subtracted from the first byte (B6) to give
the new value of the first byte (B6). Similarly, the third
entry is "42 1', which means that the second byte (B7)

5

10

15

20

25

30

35

40

45.

50

55

60

65

18
and the first byte (B6) are subtracted from the fourth
byte (B9) to give the new value of the fourth byte (B9).
The next entry in the enclave table used is '53 4'',
which means that the third byte (B8) and the fourth
byte (B9) are subtracted from the fifth byte (B10) to
give the new value of the fifth byte (B10). Finally, the
first entry in the enclave table is "3 l 5", which is used
last in the inverse autoclave function. This entry means
that the first byte (B6) and the fifth (B10) are subtracted
from the third byte (B8) to give a new value for the
third byte. The result of all of these modular arithmetic
calculations is shown in FIG. 15 as the last block, in
cluding bytes B6 through B10. The inverse variable key
addition is shown diagramatically in FIG. 16. The par
ticular key selected from the key table memory 116 for
the inverse variable key addition is determined by byte
C (referred to as bc) and Mask2 R. This is shown by
element 302 in FIG. 16, where the value Z is equated to
bC, and by element 304 where W is equated to Z XOR
Mask2.R. The value W is used to select a key from the
key table memory 116 for use during that particular
round of the inverse variable key addition. The ten
bytes of key w are shown as element 306 in FIG. 16.
Thereafter, every byte in the block of bytes in element
300 is combined by an Exclusive OR function with the
corresponding byte in Key w through the series of Ex
clusive ORs at element 310. For example, b1 XOR
Keyw generates B1. Likewise, b2 XOR Key we gener
ates B2. The only exception is that byte C in the block
undergoing transformation is not combined with its
corresponding byte in Keyw, but remains unchanged
and directly becomes BC. This is represented by the
series of querys at elements 310 associated with each
byte of the data undergoing transformation at element
300. If C is equal to the byte number, then that byte is
not combined with the corresponding key byte. The
block of data after it has undergone a round of the
inverse variable key addition is shown as element 312 in
FIG. 16.
The inverse variable permutation of FIG. 12 is ex

plained in more detail in the block diagram in FIG. 17.
The data undergoing transformation is represented as
bytes b1 through b10 at element 320. In order to select
which table in the permutation table memory 108 is
used to carry out the inverse permutation, the values in
the ten bytes of the data are added together using modu
lar arithmetic at element 322 to generate a value Z at
element 324. At element 326, a value W is generated by
combining in a bit by bit Exclusive OR function the
value Z generated at element 324 with Mask.R from the
Mask table memory 110. For example, during the first
round of decryption, Mask1.1 would be used at element
326 to generate W by the Exclusive OR operation with
Z.

Control then passes to element 328 where a standard
inverse permutation, which is merely a working back
ward through the permutation table entry as shown
earlier in connection with FIG. 4, is carried out on the
block of data, using the directions from the permutation
table W, represented by P'w. The block of data after it
has undergone the inverse permutation operation is
shown in FIG. 17 at element 330 as bytes B1 through
B10. Since during the encryption process all ten bytes of
the data undergoing encryption were used to select a
permutation table for the transformation, this rendered
it possible to decrypt the same data by once again add
ing together all ten bytes of the ciphertext data to deter
mine which permutation table should be used. This is

5,003,596
19

possible since the permutation operation merely rear
ranged the order of the values. The information used in
the encryption stage can be extracted by once again
summing together the values in the data.

EXAMPLE .

An example of the encryption of a ten byte block of
plaintext data using the embodiment of the encryption
system of the present invention discussed above will
now be shown in detail. The system must be initialized
with a permutation table, a substitution table and an
enclave table. Tables used in this example, and created
in accordance with the guidelines set forth above, are
shown below in Tables I, IIA and B, and III, respec
tively. Then a ten byte initial key is selected for creating
the key table and Mask table. For this example, the
initial key is selected to be:

10

15

20
Next, the Mask table is generated using the previ

ously generated key table. To generate the first byte or
first value in Mask1, the first mask, the values of the first
bytes in keyo to key3 are summed (mod 128):
0--0-26-0-- 102--105-- l l l --91 --95 - 68-6-4-70
--95-67--55-4-39-- 109-23-4-39-31 -- 120--50---46
-- 71 +34-48-|- 105--51 - 45-- 123--4-- 1 = 1840 mod
128 = 48.
Therefore, the first value or the first byte in Mask1 is 48.

Value 2 in Mask1 is the sum of the values of byte 2 in
Keyoto Key3 (mod 128). Value 3 in Mask1 is the sum of
the values of byte 3 in Keyo to Key31 (mod 128). Value
4 in Mask1 is the sum of the values of byte 4 in Keyo to
Key31 (mod 128). Value 5 in Mask1 is the sum of the
values of byte 5 in Keyo to Key31 (mod 128). Value 6 in
Mask1 is the sum of the values of byte 6 in Keyo to
Key31 (mod 128). Value 7 in Mask1 is the sum of the
values of byte 7 in Keyo to Key31 (mod 128). Value 8 in
Mask1 is the sum of the Values of byte 8 in Keyo to

* - R - - - - - - - 20 Key31 (mod 128). Value 9 in Mask1 is the sum of the
values of byte 9 in Keyo to Key31 (mod 128). Value 10 in

Sum the first five values of the initial key (mod 128): Mask1 is the sum of the values of byte 10 in Keyo to
(27 - 1 15-21 -- 1 - 12) mod 128 = 176 mod 128 = 48 Key31 (mod 128).
Therefore, permutation table 48 will be used. Similarly, the ten bytes or values of Mask2 are created
Sum the last five values of the initial key (mod 16): 25 from Key32 to Keyg3, the values of Mask3 are created
(41 --2-92-17-81) mod 16=233 mod 16=9 from Keys4 to Key95 and the values of Mask4 are cre
Therefore, substitution table 9 will be used. ated from Key96 to Key 127.

The completed mask table, generated from the key
table in Table IV, is set forth below:

Mask = 48 2 21 18 60 05 33 50 1 60
Mask2 = 26 78 24 72 69 13 77 43 9 99
Mask3 = 64 113 72 6 37 13 49 7 24 60
Mask4 = 104 62 69 87 18 31 102 101 32 25

R : ': i. i2. t 3 to 2: Now that the key and mask tables have been gener
(tbl 9): ated from the initial key (which is not included in either
Permutate 56 74 50 73 109 5 102 26 124 99 table), data can be encrypted using additionally the
(tbl 48): 40 permutation, enclave and substitution tables in Tables I,

Sum values 3-7 of the current key block (mod 32):
(50-73-- 109 -- 15-1-102) mod 32=349 Mod 32=29
Therefore, enclave table 29 will be used for the next

04

IIA and IIB, and III below. A particular block of plain
text data will be encrypted under the system of the
present invention and for ten rounds of encryption.

ROUND

10 108 08 11. 32 16 104 101 14 BLOCK =

step.

Current key 56 74 50 73 09 15 02 26 124 99
block:
Enclave 30 34 55 63 9 73 74 O7 109 33
(tbl 29):
Therefore 30 34 55 63 9 73 74 107 109 33
key =

50

55

(a) Variable Permutation.
Add all values in block (mod 128):
104 -- 101 - 108-08-- l l l --32 - 1 16-- 104- 101-1-1 4
=999 mod 128- 103

Mask1 value for round 1 (Mask1,1)=48
Permutation Table=Sum of the block XOR Mask1.1:
103 XOR 48-87
Therefore, permutation table 87 shall be used for the

permutation.

Block before permutation:
Block after permutation:

08
10

32
4

116
32

104
108

10
111

114
16

104
08

O
104.

108
10

11
104.

It can be seen that the initial key was used to create
the first key, identified as key0, in the key table. The

(b) First Key Addition
Mask2 value for round 1 (Mask21)=26

above steps are reproduced using keyo to generate key, 65 First key=Value 1 in the block XOR Mask2.1:
key to generate key2, etc., until key 126 is used to gener
ate key 127. The completed key table, using the initial
key identified above, is shown in Table IV below.

08 XOR 26= 118
Therefore, Key 118 shall be used for the first key addi

tion.

5,003,596
21 22

Block before key addition: 108 04 101 101 104 l 14 32 108 l l l l 16
Block after key addition: 08 13 85 74 105 102 85 91 124 55

(c) Second Key Addition. (a) Variable Permutation.
Second key = Value 2 in the block XOR Mask2.1: 1 3 Add all values in block (mod 128):
XOR 26 107 103-60-82-74-- 18-38 -- l l -- 49-50-- 10=595

Therefore, Key 107 shall be used for the second key nod 128 = 83
addition. 10 Mask1 value for round 2 (Mask 1.2)=2

Block before key addition: 108 113 85 74 105 102 85 91 124 55
Block after key addition: 72 113 120 64 94 93 56 118 30 47

(d) Variable Enclave. Permutation table=Sum of the block XOR Mask12:
Enclave table = value of Mask3.1 (mod 32)= 64 2 mod 83 XOR 2-81
32=0 Therefore, permutation table 81 shall be used for the

Therefore, enclave table 04 shall be used for the en- permutation.

Block before permutation: 103 60 82 74. 18 38 ll 49 50 10
Block after permutation: 103 60 50 38 8 l 49 74 82 10

clave. (b) First Key Addition.

Block before enclave: 72 13 120 64 94 93 56 118 30 47
Block after enclave: 2 108 96 114 88 16 101 106 8 56

(e) First Variable Substitution. Mask2 value for round 2 (Mask2.2)=78
Mask4 value for round 1 (Mask41)= 104 First key = Value 2 in the block XOR Mask2.2:
First substitution table= Value 1 in block XOR Mask41: 60 XOR 78 = 14
2 XOR 104 as 10 Therefore, Key 114 shall be used for the first key addi
Therefore, substitution table 10 shall be used for the first 35 tion.

Block before key addition: 103 60 50 38 18 11 49 74 82 10
Block after key addition: 52 60 9 5 68 30 46 117 52

substitution. (c) Second Key Addition.

Block before substitution: 2 08 96 14 88 16 101 106 118 56
Block after substitution: 2 60 34 59 75 98 127 6 29 73

(f) Second Variable Substitution. Second key=Value 3 in the block XOR Mask2.2:
Second substitution tables Value 2 in block XOR 9 XOR 78-71
Mask41: Therefore, Key71 shall be used for the second key addi

60 XOR 104 = 4 50 tion.

Block before key addition: 52 60 9 5 68 30 46 117 S2 1
Block after key addition: 35 108 9 12 07 21 12 15 84 12

Therefore, substitution table 4 shall be used for the (d) Variable Enclave.
second substitution. Enclave table=value of Mask32 (mod 32)= 113 mod

Block before substitution: 2 60 34 59 75 98 127 6 29 73
Block after substitution: 103 60 82 74 18 38 1 49 50 10

ROUND 2
65

B K O3 60 7 38 32-17 PBS 9- Therefore, enclave table 17 shall be used for the en
clave.

5,003,596
23 24

Block before enclave: 35 08 9 2 07 2 2 115 84 12
Block after enclave: 43 37 14 65 92 20 10 59 17

(e) First Variable Substitution.
Mask4 value for round 2 (Mask4,2) = 62
First substitution table=Value 2 in block XOR Mask42:
37 XOR 62 - 1 1. Block before key addition:
Therefore, substitution table 11 shall be used for the first 10 84 59 5 126 4 30 98 19 73 13

substitution. Block after key addition:
9 3 85 26 7 39 13 77 7 82

Block before substitution:
43 37 4 65 92 20 10 59 17 11

Block after substitution:
46 37 68 9 126 35 73 8 83 6

(f) Second Variable Substitution.
Second substitution table=Value 3 in block XOR

Mask4.2:
68 XOR 62= 10
Therefore, substitution table 10 shall be used for the

second substitution.

Block before substitution:
46 37 68 9 26 35 73 8 83 6

Block after substitution:
99 122 68 9 114 O 53 5 92 49

ROUND 3

BLOCK - 99 122 68 9 114 O 53 51 92 49

(a) Variable Permutation.
Add all values in block (mod 128):
99-122-- 68-9-1 14-0-1-53--51 --92-49= 657 mod
128s 7

Mask Value for round 3 (Mask1,3) = 121
permutation table=Sum of the block XOR Mask1.3:
17 XOR 121 - 104
Therefore, permutation table 104 shall be used for the

permutation.

Block before permutation:
99 122 68 9 1 4 0 53 51 92 49

Block after permutation:
68 53 5 14 122 O 9 99 49 92

(b) First Key Addition.
Mask2 value for round 3 (Mask2,3) = 24
First key = Value 3 in the block XOR Mask23:
5 XOR 24=43
Therefore, Key43 shall be used for the first key addition.

Block before key addition:
68 53 5 114 122 O 9 99 49 92

Block after key addition:
84 59 51 126 4 30 98 19 73 13

(c) Second Key Addition.
Second key=Value 4 in the block XOR Mask23:
126 XOR 24 = 102
Therefore, Key 102 shall be used for the second key

addition.

15

25

30

35

45

50

55

60

65

(d) Variable Enclave.
Enclave tables: value of Mask3.3 (mod 32) = 72 mod
32=8

Therefore, enclave table 8 shall be used for the enclave.

Block before enclave:
19 31 85 126 117 39 13 77 7 82

Block after enclave:
127 13 8 67 108 90 103 103 96 85

(e) First Variable Substitution.
Mask4 value for round 3 (Mask4,3) = 69
First substitution table= Value 3 in block XOR Mask43:
18 XOR 69-7
Therefore, substitution table 7 shall be used for the first

substitution.

Block before substitution:
127 13 18 67 108 90 103 O3 96 85

Block after substitution:
76 38 18 30 46 28 71 71 60 12

(f) Second Variable Substitution.
Second substitution table= Value 4 in block XOR

Mask43:
3OXOR 69-11
Therefore, substitution table 11 shall be used for the

second substitution.

Block before substitution:
76 38 8 30 46 28 7 71 60 112

Block after substitution:
3 100 107 30 13 54 58 58 36 14

ROUND 4

BLOCK = 3 00 107 30 13 54 58 58 36 14

(a) Variable permutation.
Add all values in block (mod 128):
3-100- 107-30-13-54-58-1-58-36-- 14 = 473
mod 128 = 89

Mask value for round 4 (Mask1,4) = 18
Permutation Table=Sum of the block XOR Mask1.4:
89 XOR 18-75
Therefore, permutation table 75 shall be used for the

permutation.

Block before permutation:
3 100 07

Block after permutation:
30 13 54 58 58 36

5,003,596
25

-continued
30 58 4 100 54 3 36 3 S8 107

(b) First Key Addition.
Mask2 value for round 4 (Mask2.4)=72
First key = Value 4 in the block XOR Mask2.4:
100 XOR 72 = 44
Therefore, Key44 shall be used for the first key addition.

Block before key addition:
30 58 14 100 54 13 36 3 58 107

Block after key addition:
99 35 0 100 36 104 12 7. 25 43

(c) Second Key Addition.
Second key=Value 5 in the block XOR Mask2.4:
36 XOR 72- 08
Therefore, Key 108 shall be used for the second key

addition.

Block before key addition:
99 35 O 100 36 104 12 7 25 43

Block after key addition:
77 95 5 S3 36 35 19 9 56 69

(d) Variable Enclave.
Enclave Table=value of Mask3.4 (mod 32)= 61 mod
32-29

Therefore, enclave table 29 shall be used for the en
clave.

Block before enclave:
77 95 15 53 36 35 19 19 56 69

Block after enclave:
7 76 52 98 12 3 113 26 108 92

(e) First Variable Substitution.
Mask4 value for round 4 (Mask44)=87
First substitution table= Value 4 in block XOR Mask44:
98 XOR 87-5
Therefore, substitution table 5 shall be used for the first

substitution.

Block before substitution:
117 76 52 98 12 13 13 26 108 92

Block after substitution:
64 80 83 98 58 48 50 31 49 43

(f) Second Variable Substitution.
Second substitution table=Value 5 in block XOR
Mask.4: 58 XOR 87 = 13

Therefore, substitution table 13 shall be used for the
second substitution.

Block before substitution:
64 80 83 98 58 48 50 31 49 43

Block after substitution:
122 28 81 29 58 127 22 16 26 49

10

15

20

25

30

35

40

45

50

55

60

65

26
ROUND 5

122 28 81 29 58 127 6 26 49 BLOCK =

(a) Variable Permutation.
Add all values in block (mod 128):
122-- 28-81 - 29-1-58- 127-22-16-26 - 49-558
mod 128 = 46

Mask value for round 5 (Mask,5)= 60
Permutation Table=Sum of the block XOR Masks:
46 XOR 60= 18
Therefore, permutation table 18 shall be used for the

permutation.

Block before permutation:
22 28 81 29 58 27 22 6 26 49

Block after permutation:
49 122 127 81 28 6 26 22 29 58

(b) First Key Addition.
Mask2 value for round 5 (Mask2.5)= 69
First key = Value 5 in the block XOR Mask25:
28 XOR 69-89
Therefore, Key39 shall be used for the first key addition.

Block before key addition:
49 122 27 8 28 16 26 22 29 58

Block after key addition:
40 118 40 87 28 74 102 10 88 57

(c) Second Key Addition.
Second key = Value 6 in the block XOR Mask2.5:
74 XOR 69s. 15
Therefore, Key 15 shall be used for the second key addi

tion.

Block before key addition:
40 18 40 87 28 74 102 101 88 57
Block after key addition:
15 50 22 72 90 74 7 76 15 92

(d) Variable Enclave.
Enclave Table=value of Mask 3,5 (mod 32)=37 mod
32=5

Therefore, enclave table 5 shall be used for the enclave.

Block before enclave:
5 50 22 72 90 74 7 76 15 92

Block after enclave:
98 69 120 65 54 18 6 17 59 14

(e) First Variable Substitution.
Mask4 value for round 5 (Mask45) = 18
First substitution table= Value 5 in block XOR Mask45:
54 XOR 18=4
Therefore, substitution table 4 shall be used for the first

substitution.

Block before substitution:
98 69 20 65
Block after substitution:

54 18 6 17 59 14

5,003,596
27 28

-continued
38 0 92 68 54 89 122 4. 74 06 Block before enclave:

94 63 13 94 12 33 99 70 18 l
Block after enclave:

(f) Second Variable Substitution. 5 89 102 105 13 44 17 86 106 57 50
Second substitution table= Value 6 in block XOR
Mask45: (e) First Variable Substitution.

89 XOR 18s 11 Mask4 value for round 6 (Mask16) = 31
Therefore, substitution table 11 shall be used for the First Substitution Table= Value 6 in block XOR
second substitution. O Mask46:

117 XOR 31 = 10
- Therefore, substitution table 10 shall be used for the first

Block before substitution: bsti
38 O 92 68 54 89 122 4 74 06 Substitution.

Block after substitution: 15
00 24 26 122 108 89 39 4S 93 28 Block bef bstituti OC efore Substitution:

89 102 105 113 44 117 86 106 57 50
Block after substitution:

ROUND 6 78 65 30 25 7 17 57 6 89 38

20

Block - to 24 is 122 los 39 so 4s 9, 2s (f) Second Variable Substitution. Second substitution table = Value 7 in block XOR
Mask46:

(a) Variable Permutation. 57 ki's = 6
Add all values in block (mod 128): 25 Therefore, substitution table 6 shall be used for the
100-24-- 126-122-- 108-89-1-39-- 45-93--28=774 second substitution.
mod 128 = 6

Mask value for round 6 (Mask16) = 105
permutation Table=Sun of the block XOR Mask1.6: Black gore stitute 7 7 57 6l. 89 38
6 XOR 105s 111 - 30 Block after substitution:
Therefore, permutation table l l l shall be used for the 6 92 76 30 20 66 S7 5 58 80

permutation.

Block before permutation: 35 ROUND 7
100 24 126 122 108 89 39 45 93 28

Block after permutation:
126 45 122 89 93 108 24 28 39 100 BLOCK is 6 92 76 30 120 66 57 5 58 80

(b) First Key Addition. (a) Variable Permutation.
40 Add all values in block (mod 128):

6-92-76-30-120-66-57-51 + 58-80= 636 mod
28s 124

Mask value for round 7 (Mask17)=33
Permutation Table-Sum of the block XOR Mask17:

45 124 XOR 33-93
Therefore permutation table 93 shall be used for the

Mask2 value for round 6 (Mask26) = 13
First key = Value 6 in the block XOR Mask26:
108 XOR 13-97
Therefore, Key97 shall be used for the first key addition.

Block before key addition: permutation.
126 45 122 89 93 08 24 28 39 00

Block after key addition:
39 78 56 40 24 08 99 80 4 77 50 Block before permutation:

6 92 76 30 20 66 57 5 58 80
- - Block after permutation:

(c) Second key Addition. 66 57 120 92 30 80 58 51 6 76
Second keys Value7 in the block XOR Mask2.6:
99 XOR 3-1 10 ss (b) First Key Addition.
Therefore, Key 110 shall be used for the second key Mask2 value for round 7 (Mask2.7)=77

addition. First key = Value 7 in the block XOR Mask2.7:
58 XOR 77 - 119

Block before key addition: Therefore, Key 19 shall be used for the first key addi
39 78 56 40 24 108 99 80 4 77 60 tion.
Block after key addition:
94. 63 13 94 121 33 99 70 18 l

Block before key addition:
66 57 20 92. 30 80 58 5 6 76

(d) Variable Enclave. Block after key addition:
Enclave Table = value of Mask3.6 (mod 32)= 13 = mod 65 - 3 - 9 30 92 21 17 58 32 6 97
32 = 13

Therefore, enclave table 13 shall be used for the en- (c) Second Key Addition.
clave. Second key=Value 8 in the block XOR Mask2.7:

5,003,596
29

32XOR 77=109
Therefore, Key 109 shall be used for the second key

addition.

5
Block before key addition:
55 9 30 92 21 17 58 32 6 97
Block after key addition:
37 17 2 62 60 69 32 10 42

10
(d) Variable Enclave.
Enclave Table = value of Mask3.7 (mod 32) = 49 mod 32
- 17

Therefore, enclave table 17 shall be used for the en
clave. 15

Block before enclave:
37 7 1 21 62 60 69 32 110 42

Block after enclave;
80 95 16 23 78 60 94 13 12 2 20

(e) First Variable Substitution.
Mask4 value for round 7 (Mask4.7)= 102
First substitution table= Value 7 in block XOR Mask47:
94 XOR 102=8 25
Therefore, substitution table 8 shall be used for the first

substitution.

Block before substitution: 30
80 95 116 23 78 60 94. 113 112 2
Block after substitution:

9 24 39 52 98 94. 99 108 35

(f) Second Variable Substitution. - 35
Second substitution table=Value 8 in block XOR

Mask4.7:
99 XOR 102 s 5
Therefore, substitution table 5 shall be used for the

second substitution. 40

Block before substitution:
9 24 39 52 98 94 99 108 35

Block after substitution:
85 98 36 57 83, 5 90 99 49 - 45

ROUND 8

BLOCK = 85 98 36 57 83 51 90 99 49 9 50

(a) Variable Permutation.
Add all values in block (mod 128):
5-98-36-57--83--51 --90-99-49-9s 657 mod 55
28-7

Mask1 value for round 8 (Mask18)=50
Permutation Table=Sum of the block XOR Mask18:
17 XOR 50-35
Therefore, permutation table 35 shall be used for the 60

permutation.

Block before permutation:
859836 57 8351 9099 499
Block after permutation:
984990 83 99.3657 51859

65

(b) First Key Addition.

30
Mask2 value for round 8 (Mask28) = 43
First key = Value 8 in the block XOR Mask2.s:
51 XOR 43=24
Therefore, Key24 shall be used for the first key addition.

Block before key addition:
984990 83 99 36 57 585 9
Block after key addition:
6,4863882 8988 1851 79 S7

(c) Second Key Addition.
Second key = Value 9 in the block XOR Mask2.8:
79 XOR 43 = 100
Therefore, Key 100 shall be used for the second key

addition.

Block before key addition:
64863882 8988 1851 79 87
Block after key addition:
6855 568935 45679 7983

(d) Variable Enclave.
Enclave Table = value of Mask38 (mod 32)=71 mod
32s 7

Therefore, enclave table 7 shall be used for the enclave.

Block before enclave:
6855,5689 35 456 79 7983
Block after enclave:
7 63 70 6 113 4096 62 1961

(e) First Variable Substitution.
Mask4 value for round 8 (Mask.4.8) = 101
First Substitution Table=Value 8 block XOR Mask48:
62 XOR 101 - 11
Therefore, substitution table 11 shall be used for the first

substitution.

Block before substitution:
7 63 70 6 113 4096 62 1961
Block after substitution:
87 48 91 121 80 9452 62. 1070

(f) Second Variable Substitution.
Second substitution table= Value 9 in block XOR
Mask48:

110 XOR O1s 11
Therefore, substitution table 11 shall be used for the

second substitution.

Block before substitution:
87 48 91 12180 94 52.62 11070
Block after substitution:
25 2495 236788 102 79 109

ROUND 9

BLOCK - 25 124. 95 23 67 88 102 79 10 9

(a) Variable Permutation.
Add all values in block (mod 128):

5,003,596
31

25-124--95-23-67-88-|- 102-79-1-1 10-91 = 804
mod 128=36

Mask value for round 9 (Mask1.9)= 11
Permutation Table = Sum of the block XOR Mask.9:
36 XOR 11 = 47 5
Therefore, permutation table 47 shall be used for the

permutation.

Block before permutation:
25 24 95 23 6788 02 79 11091 10
Block after permutation:
91 95 124798823 25 O2 1067

(b) First Key Addition. 15
Mask2 value for round 9 (Mask29)=9
First key=Value 9 in the block XOR Mask29:
110 XOR 9 - 103
Therefore, Key 103 shall be used for the first key addi

tion. 20

Block before key addition:
995 1247988 2325 102 1067
Block after key addition:
8072 99 879839 46 44 110 44 25

(c) Second Key Addition
Second key = Value 10 in the block XOR Mask29:
44 XOR 937
Therefore, Key37 shall be used for the second key addi- 30

tion.

Block before key addition:
80 72.99 87 98.39 46 44 1044
Block after key addition:
71 12020. 6 1 489 10932 69 44

35

(d) Variable Enclave.
Enclave Table=value of Mask3.9 (mod 32)=24 mod 32
=24

Therefore, enclave table 24 shall be used for the en
clave.

40

Block before enclave:
7, 2020 6 11489 0932. 69 44
Block after enclave:
4 757 98 55 2 499 10692

45

(e) First Variable Substitution.
Mask4 value for round 9 (Mask49)=32
First Substitution Table= Value 9 in block XOR
Mask49:

106 XOR 32s 10
Therefore, substitution table 10 shall be used for the first

substitution.

50

55

Block before substitution:
475798.55 2 499 0692
Block after substitution:
104 42 8939 723 104 10 10667

60

(f) Second Variable Substitution.
Second Substitution Table Value 10 in block XOR

Mask49:
67 XOR 32-3
Therefore, substitution table 3 shall be used for the

second substitution.

65

32

Block before substitution:
104 42 89 39 7231 104 10 10667
Block after substitution:
24 49 88 OS 94 71 24 12-4 125 67

ROUND O

BLOCK - 24 49 88 105 94 7 24 24 12S 67

(a) Variable permutation.
Add all values in block (mod 128):
24- 49-88 - 105-94-71 --24-- 124-- 125-67=771
mod 128 = 3

Mask value for round 10 (Mask,0) = 60
Permutation Table=Sum of the block XOR Mask 1.10:
3 XOR 60s, 63
Therefore, permutation table 63 shall be used for the

permutation.

Block before permutation:
24 49 88 105 94 7 24 24 125 67
Block after permutation:
67 24 105 88 125 24 24 94 49 71

(b) First Key Addition.
Mask2 value for round 10 (Mask2.10)=99
First Key = Value 10 in the block XOR Mask2.10:
71 XOR 99-36
Therefore, Key36 shall be used for the first key addition.

Block before key addition:
67 124 10588 125 24 24 94 49 71
Block after key addition:
10 9 11470 7O 969 117 2 7

(c) Second Key Addition.
Second key = Value 10 in the block XOR Mask2.10:
71 XOR 99-36
Therefore, Key36 shall be used for the second key addi

10.

Block before key addition:
O 9 11470 TO 969 117 1271

Block after key addition:
67 24 10588 125 24 24 94 49 71

(d) Variable Enclave.
Enclave Table=value of Mask3.10 (mod 32) = 60 mod 32
=28

Therefore, enclave table 28 shall be used for the en
clave.

Block before enclave:
67 24 10588 125 24 2494 49 7
Block after enclave:
36 3 0.91 41 8471 3887 122

(e) First Variable Substitution.
Mask4 value for round 10 (Mask410) = 125
First Substitution Table Value 10 in block XOR

Mask4,10:
122 XOR 125-7

5,003,596
33

Therefore, substitution table 7 shall be used for the first
substitution.

Block before substitution: 5
36 31 O 91 41 8471 3887 22
Block after substitution:
90 27 141 14 1756 33 72 122

(f) Second Variable Substitution. Second substitution Table value 10 in block XOR'
Mask410:

122 XOR 125= 7
Therefore, substitution table 7 shall be used for the

second substitution. 15

Block before substitution:
90 27 11 41 114 17 56 33 72 122
Block after substitution:
28 487 14 88 23 22 10544 22 20
TRANSMITTED BLOCK:
28 487 14 88 23 122 10544 22

After ten rounds of encryption in accordance with
the present invention, the plaintext block has been con- as
verted into a ciphertext block as follows:

Plaintext:
110 1132 1.16 101 115 1615 32 12
Ciphertext: 30
28 487 114 88 23 22 O5 144 122

Having described above the presently preferred em
bodiments of this invention, it is to be understood that it
may be otherwise embodied within the scope of the 35
appended claims.

TABLE I
PERMUTATION TABLE

Pern O 6 7 9 O 2 5 8 3 4 40
Pern 0 4 8 3 7 2 9 5 6
Per 2 6 4. 9 8 5 10 2 3 7
Perrn 3 9 8 3 4 5 10 6 7 2
Perm 4 9 4 6 3 8 O 2 5 7
Perm 5 5 2 4 9 6 0 7 8 3
Perm 6 2 8 6 5 9 3 4 0 7 45
Pern 7 7 8 10 2 5 4 3 9 6
Perm 8 2 10 3 8 7 4 6 9 5
Pen 9 O 8 2 3 5 9 7 6 4.
Pern 0 7 3 8 5 4 1 2 9 10 6
Per 11 6 5 7 2 10 4 3 9 1 8
Pern 12 8 5 2 7 6. 3 9 1 4 1950
Perm 13 4 6 7 5 10 2 3 8 9
Pern 14 0 2 7 1 5 4 8 9 6 3
Perm 15 3 5 7 9 8 2 10 4 6
Perm 16 6 8 9 5 3 7 10 4 2
Perm 17 2 6 4 7 5 3 9 O 8
Perm 18 2 5 4 9 10 3 8 6 7
Pern 19 3 10 5 8 6 7 4 2 g 55
Perin 20 9 10 5 6 3 7 2 4 8
Per 2 3 5 4 7 6 1 2 8 10 9
Per 22 6 5 2 7 9 10 8 3 4.
Perm 23 4 3 6 7 8 9 O 5 2
Perm 24 7 3. 5 6 4 9 O 8 2
Per 25 7 5 4 9 3 6 8 10 2 60
Pern 26 7 5 10 9 2 4 6 8 3
Perm 27 5 1. 3 10 9 7 8. 2 4 6
Perm 28 6 3 4 9 1 8 2 7 5 10
Pern 29 2 4 9 7 3 10 8 5 6
Per 30 8 2 9 4 3 7 6 10 5
Pern 31 3 4. 9 O 8 5 1 6 2 7 65
Pen 32 9 10 2 6 8 4 5 7 3
Perm 33 5 7 6 4 8 9 O 2 3
Perm 34 10 3 6 9 4 2 5 7 8
Pen 35 9 6 7 4 8 3 S 2 10

TABLE I-continued
34

PERMUTATION TABLE

Perm.59
Perm 60
Perm 6
Perm 62
Perm 63
Perm 64
Pen 65
Perin 66
Perm 67
Pern 68
Perm 69
Perr 70
Perm 7
Pern 72
Pern 73
Pern 74
Pern. 75
Perin 76
Perm 77
Perm 78
Perm 79
Perm 80
Perm 81
Perm 82
Perm 83
Perm 84
Perm 85
Perm 86
Perm 87
Perr 88
Perin 89
Per 90
Perm 91
Perm 92
Perm 93
Perm 94.
Perm 95
Perm 96
Perm 97
Perm 98
Perm 99
Perm 100
Perrn 101
Perrn 102
Perm 103
Perm 104
Perm 105
Pern 106
Pern 07
Perm 108
Pern 09
Perm 10
Perm 11
Pern 112
Perm 113
Perm 14
Pern 115
Perm 116

9
6
9
4.
l

3
5

7
O
3
l
4
8
O
l
5
9

9
5
7
10
2
2
7
9

2
5
2
4.
2
6
4.
8
10
5
4.
6
4.
5
9
8
2
9
4.
s
0. 1
7
3
9
7
5
2
2
4.
2
4
8
4

6
8
l

10
8
5
O
5
9
2
2
5
7
7
4.
8
4.
7

4
7
7
5
2
5
4.
O
7
2
5
2
6
2
3
4.
3
2
2
5
3.
3
I
4
6
4.
8
4.
6
5
4.
3
6
7
8
3
7
7
9
O
9
5
8
7
9
9
6
8
7
3
2
8

9

4
3
O
6
O
2
8
5
O
2
9
2
2
1
5
3
6
3
10
8

8
8
7
3
1

7
5
4.
6
4.
8
9
4.
6
10

l
6
9
l
9
7
6
4.
8
O l
l
6
6
5
4.
5
3
3
2
9
3
6
0 l
3
5
1

10
9
6
l

10
7
O
5
7
8
2
3
3

6
1
8
5
4.
8
9
s
5
3
9
7
7
5
6
3
8
3
7
l
8

O
8
3
3
4.
7
l

3

10
2
10

:

6
3
l
l
b
4
7
9
O l
4.
7
8
5
9
6
6
7
6
4
2
8

3
6
O
7
6
7
8
10

1
5
5
10
3
10
6
5
3
9

9
6
3
5
6
4
6
l
6
3
O
7
0
2
9
8
2
8
5
7
3
3
9
4.
4
9
O
2
4.
6
5
7
3
9
9
2
O
6
10
8

l

-

TABLE I-continued
PERMUTATION TABLE

10
5

35

6
10 9

5,003,596
36

TABLE I-continued
PERMUTATION TABLE

3 8 Perm 123 1 3 7 6 2 9 5 -4 10 8
4. 3 Perm 124 7 6 5 3 9 8 2 O 4.
9 4. Perm 125 4. 7 O 6 8 2 5 3 9
7 Perm 126 9 8 3 7 O 5 6 4.
9 3 Perm 127 7 8 5 10. 9 3 4 6
4 6

TABLE IIA

- SUBSTITUTIONTABLE - PART A
ORIGINAL TBL O TBL TBL 2 TBL 3 TBL 4 TBL 5 TBL 6 TBL 7

O 90 47 9 90 25 123 55 11
1. 46 89 44 26 Sl 85 22 54
2 66 87 95 75 103 71 23 82
3 21 20 25 106 6 3 7 62
4. 50 15 87 4. 37 17 68 101
5 57 84 38 54 88 92 94 70
6 84 O 36 46 122 47 88 108
7 67 65. 125 4. 7 O7 79 19
8 80 83 11 115 15 29 10 7
9 91 4 71 107 44 98 17 121
10 44 49 97 24 13 04 47 124
11 124 70 43 36 11 108 67 87
12 94 66 35 13 30 58 83 25
13 126 110 84 26 20 48 69 74.
14 25 37 94. 123 106 60 9 7
15 125 73 O7 35 114 89 93 126
16 8 27 58 67 27 21 13 29
17 37 68 24 58 4 14 120 1
18 82 38 98 109 89 12 62 79
19 28 64 4. 52 78 12 37 58
20 33 03 89 01 23 18 90 18
21 14 124 53 10 34 67 O 77
22 30 96 63 72 107 79 115 116
23 15 126 52 4 26 22 98 102
24 O 85 96 14 123 36 52 14
25 71 112 33 42 12 24 85 107
26 83 11 00 7 12 31 77 8
27 68 86 6 98 117 41 50 4.
28 18 74 108 84 96 97 109 12
29 123 53 28 43 50 O 04 92
30 92 52 O 62 80 65 76 66
31 34 82 93 7 102 52 95 27
32 74 123 102 39 19 32 64 84
33 97 93 65 31 81 81 44 105
34 4. 79 51 2 82 37 l 13
35 53 9 83 5 Ol 9 2 45
36 76 80 91 80 8 122 59 90
37 27 33 55 91 72 6 33 96
38 5 10 99 37 67 73 80 33
39 35 27 10 105 108 57 78 52
40 70 35 17 2O 47 116 40 65
41 43 88 56 34 21 35 45 14
42 127 48 127 49 6 1 7 83
43 79 19 86 6 66 8 31 98
44 81 61 42 70 109 O 87 34
45 16 45 120 44 35 22 115
46 42 60 77 16 48 94. 73 50
47 32 40 8 87 94 26 15 75
48 51 25 16 112 26 66 82 6
49 106 36 67 11 97 15 6. 20
50 104 92 39 15 65 91 75 109
51 20 57 14 29 85 55 118 18
52 87 95 122 120 77 83 89 97
53 48 99 72 11 99 82 25 43
54 22 3 15 85 52 2 42 49
55 45 67 73 97 57 11 74. 36
56 18 105 62 78 13 27 43 122
57 54 75 3 73 39 87 48 5
58 75 5 3 3 83 77 36 81
59 10 7 69 74 74. 88 4. 89
60 21 116 31 1 16 16 O 123
61 85 77 79 65 49 86 51 10
62 9 100 57 122 21 5 53 9
63 100 98 92 O2 93 56 97 63
64 61 10. 78 25 61 3 126 100
65 116 115 - 76 79 68 40 92 93
66 10 44 103 77 62 7 6 16
67 86 30 12 9 84 72 19 30
68 89 56 109 32 29 38 32 32

37
TABLE IIA-continued

5,003,596

SUBSTITUTION TABLE - PARTA
ORIGINAL TBLO TBL TBL 2 TBL 3 TBL 4 TBL 5 TBL 6 TBL 7

69 9 8 106 63 O 46 8 31
70 12 5 26 28 118 1OO 108 22
7 13 32 37 103 17 84 24 56
72 O8 7 54 94 98 74 106 44
73 69 26 40 68 110 68 49 110
74 93 76 9 8 54 14 124 9.
75 55 120 32 47 8 19 2 120
76 1 54 80 59 5 80 107 69
77 52 8 92 60 54 2 13
78 95 104 48 56 46 17 6
79 20 21 41 12 73 93 O 103
80 O7 69 115 99. 28 99 63 6
81 64 72 23 8 86 95 60 40
82 29 24 23 53 44 27 2.
83 23 41 27 51 27 78 71 86
84 47 8 74 64 100 9 38 17
85 40 63 60 57 91 5 39 12
86 26 12 46 89 63 125 27 78
87 58 31 12 40 7 4. 102 72
88 14 102 64 27 45 10 99 24
89 65 113 50 88 3. 2 58 42
90 17 109 49 27 14 45 100 28
9 36 25 17 6 43 28 11 41
92 59 13 14 50 36 43 86 39
93 2 91 O 12 33 3 34 53
94 72 2 8 38 90 90 56 104
95 39 21 90 86 87 124 113 37
96 1 17 05 69 32 10 5 60
97 15 55 47 18 64 127 103 57
98 38 22 126 19 38 51 41 68
99 60 122 66 48 5 69 19 35
100 03 6 19 21 55 20 84 67
101 19 8 61 16 56 23 14 O
102 102 106 2 22 124 126 70 19
103 77 39 5 33 3 6 12 71
104 99 94 59 24 70 96 28 73
05 109 6 10 66 58 75 81 95
106 98 97 6 25 19 02 72 80
O7 56 7 70 O 79 25 26 106
108 88 29 2 104 59 49 96 46
09 96 46 123 82 40 109 65 64
110 l 23 85 110 42 30 18 99
11 6 108 29 76 104 33 46 85
112 73 78 20 45 O 103 54 5

3 101 58 7 3 75 50 23 38
14 7 14 45 8 25 63 57 88

115 62 90 68 17 2 76 35 26
116 12 107 82 19 95 53 29 55
17 4. 59 30 83 64 66 23
118 105 28 3 17 69 70 114 48
19 63 34 34 100 22 8 105 51

120 13 SO 124 96 92 105 2 59
121 7 11 2 95 24 62 1. 94
22 78 43 88 60 20 20 91 3
23 49 19 04 30 9 34 25 127
124 3 42 11 53 4. 42 20 47
125 3. 18 18 93 76 59 30 2
126 24 14 75 55 105 106 3 125
127 22 62 22 108 11 39 116 76

TABLE IIB
SUBSTITUTION TABLE - PART B

ORIGINAL TBL 8 TBL 9 TBL 10 TBL 1 TBL 12 TBL 3 TBL 4 TBL 15

0 42 18 66 24 19 121 73 O
1 32 124 13 O 58 56 36 52
2 35 109 3. 69 27 78 107 44
3 20 17 7 53 70 58 43 83
4. 13 37 97 45 120 8 2 40
5 38 19 91 26 O 85 28 54
6 4. OO 49 12 57 79 54 28
7 2 89 56 87 7 5 31 7
8 78 83 51 82 6 77 50 5
9 8 96 9 22 35 23 93 110
10 18 28 5 97 7 42 29 20

1 59 52 93 127 94. 87 O 06
2 46 102 87 78 02 15 34 35
13 107 126 45 59 08 112 48 92

38

39
5,003,596

TABLE IIB-continued
SUBSTITUTION TABLE - PART B

ORIGINAL TEBL 8 TBL 9 TBL 10 TBL 1 TBL 12 TBL 13 TBL 14 TBL 5
14 31 9. 33 68 77 38 104 67
15 8 104 46 116 17 1 22 30
6 15 35 98 106 99 23 25 60
7 6 26 70 83 82 125 92 123
18 82 105 95 107 30 12 94. 38
19 49 62 5 10 67 66 96 Ol
20 102 85 2O 35 15 45 72 4.
21 87 15 l 29 95 05 5 97
22 125 125 82 104 32 35 63 26
23 39 66 6 33 79 25 98 56
24 117 107 85 118 121 24 109 11
25 53 21 123 76 59 52 125 99
26 16 110 19 18 78 60 76 70
27 80 50 79 14 40 33. 23 126
28 30 48 19 54 48 O 42 8
29 25 67 24 63 81 7 99 2
30 112 111 74 74 9 115 47 95
31 57 5 3 41 3 16 11 81
32 50 63 6 7 16 100 57 17
33 40 90 116 123 72 5 84 41
34 120 59 103 12 27 44 20 90
35 105 106 O 32 4. 19 69 5
36 2. 80 23 2 106 18 70 55
37 47 9 122 125 112 62 20 14
38 10 57 40 100 63 89 52 109
39 94 16 62 34 13 92 83 27
40 5 81 105 94 71 13 24 74
4. 76 99 104 5 47 11 39 80
42 54 19 32 19 28 3 15 2
43 34 84 37 46 60 49 26 119
44 92 77 17 4. 25 99 7 64
45 66 49 13 15 11 17 60 100
46 15 123 99 13 5 86 61 42
47 11 33 77 17 19 85 73
48 27 55 124 92 27 35 94
49 100 60 18 62 76 26 95 23
50 77 98 38 56 100 22 102 48
51 7 65 35 92 87 54 21 19
52 19 38 68. 102 4. 84 89 32
53 70 4. 86 55 122 41 117 116
54 68 95 44 108 85 98 90 33
55 104 58 72 51 90 57 67 88
56 48 118 73 72 46 61 7 9
57 83 97 89 50 105 43 81 8
58 7 88 48 37 8 97 62 46
59 19 72 47 8 24 114 13 66
60 98 46 18 36 54 74 32 108
61 72 23 90 70 23 73 37 59
62 89 120 l 79 1. 9 127 114
63 85 2 41 48 89 71 38 7
64 41 29 58 89 118 22 126 34
65 109 93 107 9 52 76 82 22
66 62 44 8 15 6 102 7 39
67 74 34 112 111 96 19 10 102
68 22 40 14 22 86 120 78 18
69 O 45 O2 90 83 47 41 53
70 121 16 OO 91 2 16 8 16
7 29 30 42 58 33 82 87 3.
72 14 112 5 86 37 9 112 125
73 3 17 53 75 14 69 106 75
74 91 22 88 93 38 37 86 62
75 36 115 64 120 11 59 88 13
76 4. 24 109 3 107 13 30 32
77 5. 122 108 40 62 Ol 44 27
78 52 114 101 7 50 67 121 86
79 86 70 2 17 126 68 97 57
80 l 36 71 67 84 28 19 87
81 67 73 124 19 73 107 6 O
82 43 47 27 42 125 118 105 76
83 103 12 92 27 44 8 40 24
84 63 27 43 77 88 4. 4. 107
85 113 71 21 43 45 80 64 25
86 56 43 57 64 49 72 118 36
87 55 87 84 25 16 106 101 05
88 18 3 75 30 14 94 79 72
89 96 79 78 09 68 126 123 78
90 75 75 26 103 29 109 103 2
91 6 10 11 95 65 53 53 2
92 11 74 67 126 31 83 12 47
93 10 108 126 16 110 50 124 37

40

5,003,596
41 42
TABLE IIB-continued

SUBSTITUTION TABLE - PART B
ORIGINAL TBL 8 TBL 9 TBL iO TBL TBL 12 TBL 13 TBL 14 TBL 15

94 45 O 110 88 36 10 19 9.
95 9 42 117 13 39 32 9 98
96 16 82 34 52 03 7 10 43
97 124 39 50 09 O 80 11
98 69 53 39 98 5 29 14 103
99 9S 10 10 49 10 34 08 85
100 79 20 12 99 69 2 15 63
10t 126 54 127 21 24 103 00 104
102 97 13 65 57 18 2 68 l
O3 88 4. 83 44 2 6 124
104 60 64 28 12 104 20 3 15
105 26 7 30 84 43 90 9 65
06 33 1. 61 28 23 46 8 93
107 123 92 81 05 93 30 27 58
108 28 32 60 10 10 36 59 7
109 64 13 54 85 74. 96 55 77
110 23 55 2 73 20 88 46 84
l 12 O3 25 6 56 65 65 61

112 108 5 94 14 26 4. 33 121
13 99 94. 25 80 22 48 ill 29
4. 106 31 59 96 9. 27 56 45

15 65 56 36 60 34 63 13 22
116 24 86 69 38 98 75 114 15
117 10 6. 96 66 42 40 66 68
18 17 6 29 20 113 55 122 3
19 90 78 22 80 24 75 113
20 93 127 76 - 3. 66 64 74 89
121 73 76 80 23 53 104 45 96
22 122 14 4. 39 97 70 51 49
123 44 25 106 81 12 95 6 69
14 37 8 20 61 15 108 116 120

125 84 2 52 65 55 39 58 50
26 27 68 114 47 75 31 77 6
27 58 69 63 101 64 93 49 79

TABLE III TABLE III-continued

ENCLAVE TABLE - 35 - ENCLAVE TABLE
al b C d 3. b C d

TABLE 0: 523 35 2 5 42 5 42 34 32 4 154 1 4 3
43 35 43 25 TABLE 8: 2 5 4 1 2 4 425 23
2 5 4 2 41 153 135 1 2 3 53 2 3 4. 524
45 5 4 3 25 32 4 40 34 1 2 4 5 153 52

3 2 423 2 4 4 13 435 352 5 12 345
TABLE I: 3 2 3 25 421 423 S 12 4 3 34 1 4 3

43 5 14 345 53 TABLE 9: 132 4 12 45 4 3 2
25 4 2 4 3 5 4 2 5 5 i 3 135 1 2 3 3.15
523 43 32 3.54 254 32 532 54
1 45 52 253 1 42 45 425 5 4 3 3 4 5 2S3

TABLE 2: 4 3 1 42 253 253 3 41 2 5 4 2 4 1 2 4
25 453 3 25 43 5 TABLE 10: 1 4 3 5 4 3 523 25

35 21 4 43 321 251 235 45 342
234 3 25 42 5 4 3 15 154 3 2 5 4
S 42 531 5 14 1 42 524 3 2 2 5 4 1 2 3

TABLE 3: 1 2 4 534 245 423 50 432 421 43 435
45 452 421 25.4 TABLE ll: 5 12 42 2 4 5 3 4
235 2 3 153 531 453 23 354 2 4 3
3 42 34 534 3 2 1 2 4 5 4 1 2 3 52
5 13 25 3 12 45 345 453 5 12 435

TABLE 4: 253 23 1 4 2 1 253 23 1 3 25 43 52
4 2 4 25 1 42 45 TABLE 2: 4 12 253 532 5 4
524 5 4 235 4 3 2 55 5 4 3 425 21 4 452
35 1 4 3 3.54 3 2 1 23 1 5 4 45 3 2 1

34 1 352 5 13 S 4 25 34 4 3 4 3
TABLE 5: 1 4 3 24 1 2 3 4. 53 3.54 132 3 25 235

5 2 453 3 2 352 TABLE 1.3: 23 425 32 4 524
2 3 4. 125 53 1 4 3 42 531 245 3 5
3 25 53 4 5 4 1 425 60 524 25 4. 43 45
45 3 12 4 25 2 4 3 5 3 2 5 2 2 4 3

TABLE 6: 154 52 352 5 14 453 1 4 3 153 l 32
3 12 2 13 421 3 42 TABLE 1.4: 532 2 3 4 43 425
5 4 3 435 3 4 43 3 25 5 2 2 4 5 152
4 25 34 2 4 5 25 2 4 4, 25 52 34
23 524 S 3 253 65 1 4 3 4 3 32 4 2. 13

TABLE 7: 25 2 5 5 42 354 45 351 5 13 53 4
5 2 52 2 3 4.32 TABLE 15: 25 35 532 235
3 45 5 4 3 3 25 52 542 534 45 5 3
423 43 431 2 5 3.54 2 4 3 423 24

5,003,596
43 44

TABLE III-continued TABLE III-continued
ENCLAVE TABLE ENCLAVE TABLE

2 b C d al b C d

23 4 2 25 342 5 3 4 253 35.4 523
4 3 125 3 4 45 1 TABLE 24: 25 352 3 25 3

TABLE 6: 24 23 1 2 15 5 3 5 4 3 23 42 4 S
452 3 4 5 4 3 3 2 1 32 4 1 4 3 25 3 1 5 4
23 4 52 532 452 45 5 4 5 4 2 - 3

3 15 24 3 24 2 3 4. 32 45 43 53
534 5 3 451 45 O TABLE 25: 452 42 253 43

TABLE 7: 435 235 521 534 3 4 53 4 32.4 1 : 5
3 24 45 132 351 35 2 3 1 4 5 253
5 12 5 3 354 1 42 523 352 5 2 3 2
24 324 2 4 5 2 5 24 45 - 3 1 5 2.4
53 1 42 4 3 423 TABLE 26: 4 25 5 4 3 32 1 4 S

TABLE 8: 24 3 4 5 4 531 42 2 4 S 34 523
435 153 25 4 13 5 2 3 4. 35 2 5 3 12
1 2 4 4.32 4 3 2 1 42 5 3 42 l & 53 4S 1
5 3 2 4 5 345 3.25 35 352 1 - 2 2 3 4.
352 52 1 2 3 2 5 4 TABLE 27: 25 2S 1 3 25 452

TABLE 9: 253 4 13 253 452 4 2 3 4 3 32 2.45
435 3 42 132 3 25 42 135 24 134
34 35 4 5 5 3 20 534 3 42 5 4 5 3
5 2 25 1 5 4 1 24 351 524 453 32
1 2 4 524 324 34 TABLE 28: 3 5 5 4 3 4 13 3 4 5

TABLE 20 3 4 42 42 3 42 534 23 1 3 25 52
2 4 5 3 14 2 4 5 14 421 4 25 52 4 3
52 235 135 23 42 3 2 2 3 4 25.4

523 153 352 153 25 253 54 5 4 1 32
43 542 5 4 3 4 25 TABLE 29: 453 4 3 2 23 342

TABLE 2: 24 S S 23 453 32 5 4 25 1 452 21 4
35 3 42 542 2 4 32 S 4 3 524 435
5 2 45 23 32 S 3 25 24 4 3 52
3 4 135 1 25 45 24 3 15 3 5 53

423 2 4 3 4 5 4 3 30 TABLE 30: 24 2 4 3 53 4 5
TABLE 22: 3 4 45 13 4 25 35 4 4 2 2 4 352

5 42 523 25 534 5 3 3.54 4 3 2 1 4 3
53 235 5 12 3 42 25 5 21 524 2 3 4

4 25 1 42 423 25 4 3 2 35 3 15 52
23 1 3 4 3 4 5 4 3 TABLE 31: 53 4 15 423 152

TABLE 23: 235 4 5 523 32 1 2 4 23 3.54 3 4
1 4 3 3 2 1 23 4 5 35 3 15 153 1 42 42
4 52 S 42 4 5 24 1 452 3 42 53 235
52 134 42 3.54 2 4 3 524 2 5 5 4 3

TABLE IV
KEY TABLE

KEY 0 - O 34. 55 63 9 73 74 107 109 33
KEY 1 a 10 62 48 85 32 101 8 O 63 56
KEY 2 a. 26 59 75 97 33 80 8 6 73 26
KEY 3 - O 92 102 108 73 29 43 98 31 18
KEY 4 - 102 10 121 22 60 56 24 124, 18 15
KEY 5 - 105 67 89 14 80 51 28 122 26 15
KEY 6 = 11 05 44 O 42 63 4 12 49 28
KEY 7 91 70 52 58 88 15 07 22 51 48
KEY 8 = 95 9 21 22 109 80 79 64 60 2
KEY 9 68 53 115 99 54 56 9 56 27 27
KEY O = 6 86 116 122 38 79 83 116 48 60
KEY 1 - 70 31 48 44 121 44 O 55 34 57
KEY 12 sc 95 73 50 69 67 22 2. 79 24 9
KEY 13 - 67 02 17 6 28 24 2 O 93 O7
KEY 4 - 55 22 97 98 34 124 50 69 37 4
KEY 15 - 39 68 62 31 70 44, 97 41 87 O
KEY 16 = 109 34 27 6 81 46 22 12 39 19
KEY 7 23 109 58 95 9 78 93 109 65 87
KEY l8 = 39 6 95 39 112 79 10 7 51 63
KEY 9 31 122 83 97 18 22 13 37 50 69
KEY 20= 120 18 20 45 97 50 05 7O 9 37
KEY 21 = 50 44, 32 62 83 85 121 44 43 9
KEY 22 46 10 0 107 120 87 58 68 56 69
KEY 23 71 119 36 74 123 87 96 68 70 39
KEY 24 34 03 24 58 124 43 5 26 94
KEY 25 s 48 74 74 90 90 6 30 120 O 120
KEY 26 = 105 15 20 3. 55 29 70 24 6 O7
KEY 27 = 51 07 57 32 29 9 59 50 18 95
KEY 28 = 45 4. 53 89 14 78. 73 56 iOS 48
KEY 29 - 123 68 4. 24 30 l 47 48 97 83
KEY 30 - 4 84 30 25 59 11 74 74 38 62
KEY 31 - 92 44 83 92 109 82 106 17 35
KEY 32 105 96 O 11 6 108 O 7O 39 109

5,003,596
45

TABLE IV-continued
KEY TABLE

KEY 33 = 85 49 62 75 4, 29 123 87 14
KEY 34 - 31 29 5. 125 Ol 42 123 98 45 69
KEY 35 - 67 114 81 52 21 45. 5. 32 86 98
KEY 36 = 45 117 27 30 59 20 67 43 61 124
KEY 37 = 23 48 119 81 16 126 67 12 43 98
KEY 38 l 47 5 0 13 122 20 26 123 17
KEY 39 = 57 21 57 28 91 30 123 6 91 60
KEY 40 - 65 23 11 68 34 94 79 92 5 88
KEY 4 59 89 79 104 121 43 46 27 6 50
KEY 42 as 20 47 47 85 7 120 50 42 89 5
KEY 43 st 16 14 103 12 126 30 107 20 120 45
KEY 44 = 25 25 14 33 8 10 40 68 35 64
KEY 45 = 12 111 36 10 68 92 14 25 119 3
KEY 46 = 48 95 71 14 1 40 6 123 82 73
KEY 47 = 48 7 12 44 99 63 108 27 73 03
KEY 48 = 58 9 42 42 2 52 32 73 58 31
KEY 49 = 67 97 120 32 97 126 90 39 49 48
KEYSO = 87 52 04 84 33 24 3 4 42 94
KEY 5 - 26 44 3 123 85 70 21 74 76 21
KEY 52 = 43 06 74 52 20 50 45 8 26 112
KEY 53 - 19 5 43 68 28 65 75 95 104 84
KEY 54 sc 02 52 8 40 26 86 16 106 13 47
KEY 55 - 53 95 62 82 55 87 78 47 49 40
KEY 56 = 65 - 34 38 8 94 4. 9 5 15 108
KEY 57 - 57 80 6 41 87 7 55 7 104 21
KEY 58 as 15 4 3 24 55 17 04 57 26 76
KEY 59 - 24 14 83 103 92 71 29 4. 04
KEY 60 = 3 6 115 4 16 90 25 24 42 34
KEY 61 - 72 98 79 21 27 7 74 40 3 8
KEY 62 = 40 83 & 121 107 108 5 52 72 78
KEY 63 = 70 69 24 2 42 115 127 28 32 75
KEY 64 - 124 6 6 10 2 117 42 111 57 9
KEY 65 = 20 76 85 6 88 12 108 22 87 101
KEY 66 = 75 25 52 95 28 98 40 87 122
KEY 67 - 48 68 75 26 77 8 0 4 23 79
KEY 68 as 26 6 44 79 11 9 46 80 62 23
KEY 69 = 58 20 97 59 90 89 50 20 59 52
KEY 70 42 9 74 86 34 104 30 59 49 108
KEY 7 = 23 80 54 9 47 l 94 6 96 123
KEY 72 = 4, 96 73 71 58 26 111 65 117 90
KEY 73 - 115 76 68 105 29 24 95 5 96 122
KEY 74 = 10 85 8, 11 51 68 28 77 3. 108
KEY 75 26 86 99 30 21 54 - 22 19 124 16
KEY 76 62 5 5 33 90 104 8 53 86 114
KEY 77 - 33 120 87 109 49 51 57 35 61 100
KEY 78 = 4 43 72 6 35 9 12 95 17 12
KEY 79 as 82 102 O 66 46 105 09 45 34 7
KEY 80 - 116 98 35 20 0 27 82 122 8 99
KEY 81 - 103 39 69 34 83 86 74 81 9 19
KEY 82 - 33 26 44 87 97 27 13 86 78 7
KEY 83 as 73 1. 4 69 5 82 74 87 49 117
KEY 84 - 104 45 12 122 14 2 67 31 9 13
KEY 85 - 118 42 61 12 19 2 54 81 99 93
KEY 86 - 34 73 18 14 69 42 123 83 119 77
KEY 87 - 81 104. 102 74. 57 34 78 8 19 0
KEY 88 51 114, 30 103 27 85 108 23 13 24
KEY 89 - 25 12. 87 6 64 90 124 115 69 3
KEY 90 10 16 65 21 12 5 19 108 21 60
KEY 91 as 26 108 63 82 31 84 90 48 10 116
KEY 92 - 110 27 7 96 91 98 99 33 70 104
KEY 93 = 10. 95 21 6 112 9 77 74 10 6
KEY 94 = 103 125 43 52 33 76 97 58 80 82
KEY 95 - 72 73 57 33 100 99 36 11 123 2
KEY 96 - 63. 107 84 51 18 102 59 10 102 36
KEY 97 e 89 99 66 13 69 S 123 76 35 41
KEY 98 - 29 63 39 94 76 82 26 61 22 15
KEY 99 = 97 04 5 103 52 50 10 68 28 12
KEY 00 = 4 97 30 l 122 92 42 24 91 4
KEY 101 - 88 11 36 32 24, 105 119 40 9 55
KEY 102 = 71 36, 102 125 13 57 19 58 88 35
KEY 103 = 23 31 24 58 48 55 74 125 11.
KEY 104 - 4. 95 102 26 125 100 92 3 92 55
KEY 05 = 12 83 82 75 36 7 126 77 79 6
KEY.06 = 39 95 0 69 77 iO 29 97 47 102
KEY 107 = 36 23 45 10 55 59. 109 45 98 24
KEY 108 - 46 24 15 81 65 75 3i 48 33 10
KEY 109 - 18 124 2 37 43 73 27 37 126 75
KEY 110 = 21 i3 53 18 97 77 4 22 114 70
KEY 1 = 33 81 68 67 74 3 67 24 60 96
KEY 12 = 104 31 67 124 84 99 68 95 9 20
KEY 113 74 121 92 Ol 12 57 24 65 45 3

46

5,003,596
47 48

TABLE IV-continued
KEY TABLE

KEY 114 = 83 17 59 35 86 21 31 63 102 101
KEY 15 - 31 7 87 10 35 94 35 0 18
KEY 6 - 35 S 66 12 33 113 66 43 58 4.
KEY 17 - 36 6 59 82 58 77 2 36 103 93
KEY 18 - 95 25 48 47 20 117 55 19 67
KEY 119 - 17 48 102 O 1 37 94 9 22 45
KEY 120 - 14 125 59 92 35 94 58 04 84 7
KEY 121 - 37 34 56 124 124 29 67 33 4 14
KEY 122 = 97 54 123 125 69 95 37 18 19 4.
KEY 23 = 72 04 81 10 40 85 25 25 121 109
KEY 24 : 95 27 107 11 5 53 10 29 16 37
KEY 125 - 44. 46 118 68 34 69 125 3 94. 65
KEY 126 = 62 110 70 27 124 31 19 97 9 2
KEY 127 = 1 54 25 87 107 73 4 18 62 34

I claim:
1. A method of cryptographically transforming elec- tain information in the latest key stored in the key table

tronic digital data from one form to another comprising
the steps of: 20

a. establishing in memory at least one transformation
table associated with a predetermined crypto
graphic function, said table including a plurality of
addressable entries which each direct a predeter
mined transformation of data in accordance with 25
said function;
establishing in memory one or more key based
determinants;

... selecting one of said entries in said transformation
table based upon certain information in one of said 30
data key based determinants; and

d. cryptographically transforming said data by said

2.

function in accordance with the directions of said
selected entry in said transformation table.
A method of generating a table of keys for use in 35

cryptographically transforming electronic digital data
from one form to another comprising the steps of:

a. establishing an initial key;
b. establishing in memory at least one transformation

table associated with a predetermined crypto- 40
graphic function, said table including a plurality of
addressable entries which each direct a predeter
mined transformation of data in accordance with
said function;
selecting at least one of said entries in said transfor-45
mation table based upon certain information in said
initial key;

d. transforming said initial key by said function in
accordance with the directions of said selected
entry in said transformation table; 50
storing said transformed initial key as an entry in
the key table memory;

f. selecting at least one of said entries in said transfor
mation table based upon certain information in the
initial key or in a key stored in the key table mem- 55
ory;

g. transforming the key used in step (f) above by said
function in accordance with the directions of said
selected entry in said transformation table;

h. Storing said transformed key as another entry in the 60

i.

3.

key table memory; and
performing steps (f)-(h) above repetitively until
said key table memory has a desired plurality of
keys stored therein.
The method of claim 2 wherein said initial key is 65

not stored as an entry in the key table memory.
4. The method of claim 2 wherein said transformation

table entry selected in step (f) above is based upon cer

memory.
5. A method of generating a table of keys for use in

cryptographically transforming electronic digital data
from one form to another comprising the steps of:

a. establishing an initial key having a plurality of
bytes;

b. establishing in memory a plurality of transforma
tion tables, each associated with a predetermined
cryptographic function, each of said tables includ
ing a plurality of addressable entries which direct a
predetermined transformation of data in accor
dance with said function;

c. selecting, in turn, at least one of said entries in each
of said transformation tables based upon certain
information in said initial key;

d. transforming said initial key by said functions in
accordance with the directions of said selected
entries in said transformation tables;

e. storing said transformed initial key as an entry in
the key table memory;

f, selecting, in turn, at least one of said entries in each
of said transformation tables based upon certain
information in at least one of the keys stored in the
key table memory;

g. transforming the key used in step (f) above by said
functions in accordance with the directions of said
selected entries in said transformation tables;

h. storing said transformed key as another entry in the
key table memory; and

i. performing steps (f)-(h) above repetitively until
said key table memory has a desired plurality of
keys stored therein.

6. The method of claim 5 wherein said initial key is
not stored as an entry in the key table memory.

7. The method of claim 5 wherein the entries in the
transformation tables selected in step (f) above are based
upon certain information in the latest key stored in the
key table memory.

8. The method of claim 5 wherein said transformation
tables include a substitution table with a plurality of
entries for directing a particular substitution on said key
undergoing transformation.

9. The method of claim 5 wherein said transformation
tables include a permutation table with a plurality of
entries for directing a particular permutation on said
key undergoing transformation.

10. The method of claim 5 wherein said transforma
tion tables include an enclave table with a plurality of
entries for directing a particular transformation on said
key undergoing transformation in which each byte in

5,003,596
49

said key becomes a function of itself and of every other
byte in the key.

11. The method of claim 5 wherein said transforma
tion tables include a substitution table with a plurality of
entries for directing a particular substitution on said key
undergoing transformation and a permutation table
with a plurality of entries for directing a particular
permutation on said key undergoing transformation.

12. The method of claim 5 wherein said transforma
tion tables include a substitution table with a plurality of
entries for directing a particular substitution on said key
undergoing transformation, a permutation table with a
plurality of entries for directing a particular permuta
tion on said key undergoing transformation, and an
enclave table with a plurality of entries for directing a
particular transformation on said key undergoing trans
formation in which each byte in said key becomes a
function of itself and of every other byte in the key.

13. The method of claim 12 wherein the substitution
table entry, the permutation table entry and the enclave
table entry selected is determined by an arithmetic con
bination of the values of a portion of the bytes in the key
undergoing transformation.

14. The method of claim 12 wherein said key under
going transformation is first substituted in accordance
with the selected entry in the substitution table, is then
permutated in accordance with the selected entry in the
permutation table, and is then transformed in accor
dance with the selected entry in the enclave table.

15. The method of claim 14 wherein the substitution
and permutation table entries selected are determined
by an arithmetic combination of the values of a portion
of the bytes in the key undergoing transformation, and
the enclave table entry selected is determined by an
arithmetic combination of the values of a portion of the
bytes in the key after it has been substituted and permu
tated.

16. The method of claim 15 wherein the substitution
table entry selected is determined by an arithmetic con
bination of the values of one-half of the bytes in the key
undergoing transformation and the permutation table
entry selected is determined by an arithmetic combina
tion of the values of the other half of the bytes in the key
undergoing transformation.

17. A method cryptographically transforming elec
tronic data from one form to another comprising the
steps of:

a. establishing in memory a key table with a plurality
of multi-byte key entries;

b. selecting a multi-byte block of data for transforma
tion;

c. selecting an entry from the key table based on
information in at least one of the bytes of the data
block;

d. arithmetically combining each byte in the selected
key with a corresponding byte in the data block,
except that the bytes in the data block used to
select the entry from the key table remain un
changed; and

e. repeating steps (c) and (d) above for a plurality of
rounds and using a different byte of the data block
in each round for selecting the entry from the key
table.

18. A method of cryptographically transforming elec
tronic data from one form to another comprising the
steps of:

a. establishing in memory a key table with a plurality
of multi-byte key entries;

5

10

15

20

25

30

35

45

50

55

60

65

50
b. selecting a multi-byte block of data for transforma

tion;
c. selecting an entry from the key table based on

information in at least one of the bytes of the data
block;

d. arithmetically combining each byte in the selected
key with a corresponding byte in the data block,
except that the bytes in the data block used to
select the entry from the key table remain un
changed; and

e. repeating steps (c) and (d) above for a plurality of
rounds.

19. The method of claims 17 or 18 further including
the steps of generating from the key table a determinant
table having a plurality of entries which are each the
result of an arithmetic combination of two or more
values in the key table, and then combining an entry
from said determinant table with said one of the values
in the data block undergoing transformation to select an
entry from the key table.

20. The method of clain 19 wherein a different entry
from said determinant table is used during each round.

21. The method of claim 19 wherein the entry from
the determinant table and said one of the bytes in the
data block are combined by an Exclusive OR operation.

22. The method of claim 19 wherein the value of the
entry from the determinant table is added to the value of
said one of the bytes in the data block.

23. A method of cryptographically transforming elec
tronic data from one form to another comprising the
steps of:

a. establishing in memory a key table with a plurality
of multi-byte key entries;

b. establishing in memory one or more multi-byte key
based determinants;

c. selecting a multi-byte block of data for transforma
tlon;

d. selecting an entry from the key table based on
information in at least one of the bytes of one of
said key based determinants;

e. arithmetically combining each byte in the selected
key with a corresponding byte in the data block;
and

f. repeating steps (d) and (e) above for a plurality of
rounds.

24. The method of claims 17, 18 or 23 wherein the bits
in the selected key are arithmetically combined with the
corresponding bits in the data block undergoing trans
formation by an Exclusive OR operation.

25. The method of claims 17, 18 or 23 wherein the
values of the bytes in the selected key are added to the
values of the corresponding bytes in the data block
undergoing transformation.

26. The method of claims 17, 18 or 23 wherein said
key table is established by the steps of:

f. establishing an initial key;
g. establishing in memory at least one transformation

table associated with a predetermined crypto
graphic function, said table including a plurality of
addressable entries which each direct a predeter
mined transformation of data in accordance with
said function;

h. selecting at least one of said entries in said transfor
mation table based upon certain information in said
initial key;

i. transforming said initial key by said function in
accordance with the directions of said selected
entry in said transformation table;

5,003,596
51

j. storing said transformed initial key as an entry in
the key table memory;

k. selecting at least one of said entries in said transfor
mation table based upon certain information in the
initial key or in a key stored in the key table mem- 5
ory;

1. transforming the key used in step (k) above by said
function in accordance with the directions of Said
selected entry in said transformation table;

m. storing said transformed key as another entry in 10
the key table memory; and

n. performing steps (k)-(m) above repetitively until
said key table memory has a desired plurality of
keys stored therein.

27. The method of claim 26 wherein said initial key is 15
not stored as an entry in the key table memory.

28. The method of claim 26 wherein said transforma
tion table entry selected in step (k) above is based upon
certain information in the latest key stored in the key
table memory. 20

29. The method of claims 17, 18 or 23 wherein said
key table is generated by the steps of:

f. establishing an initial key having a plurality of
bytes;

g. establishing in memory a plurality of transforma- 25
tion tables, each associated with a predetermined
cryptographic function, each of said tables includ
ing a plurality of addressable entries which direct a
predetermined transformation of data in accor
dance with said function; 30

h. selecting, in turn, at least one of said entries in each
of said transformation tables based upon certain
information in said initial key;

i. transforming said initial key by said functions in
accordance with the directions of said selected 35
entries in said transformation tables;

j. storing said transformed initial key as an entry in
the key table memory;

k. Selecting, in turn, at least one of said entries in each
of said transformation tables based upon certain 40
information in at least one of the keys stored in the
key table memory;

1. transforming the key used in step (k) above by said
functions in accordance with the directions of said
selected entries in said transformation tables; 45

m. Storing said transformed key as another entry in
the key table memory; and

n. performing steps (k)-(m) above repetitively until
said key table memory has a desired plurality of
keys stored therein. 50

30. The method of claim 29 wherein said initial key is
not stored as an entry in the key table memory.

31. The method of claim 29 wherein the entries in the
transformation tables selected in step (k) above are
based upon certain information in the latest key stored 55
in the key table memory.

32. The method of claim 29 wherein said transforma
tion tables include a substitution table with a plurality of
entries for directing a particular substitution on said key
undergoing transformation and a permutation table 60
with a plurality of entries for directing a particular
permutation on said key undergoing transformation.

33. The method of claim 29 wherein said transforma
tion tables include a substitution table with a plurality of
entries for directing a particular substitution on said key 65
undergoing transformation, a permutation table with a
plurality of entries for directing a particular permuta
tion on said key undergoing transformation, and an

52
enclave table with a plurality of entries for directing a
particular transformation on said key undergoing trans
formation in which each byte in said key becomes a
function of itself and of every other byte in the key.

34. A method cryptographically transforming elec
tronic data from one form to another comprising the
steps of:

a. establishing in memory at least one transformation
table associated with a predetermined crypto
graphic function, said table including a plurality of
addressable entries which direct a predetermined
transformation of data in accordance with said
function;

b. selecting at least one of the entries in said transfor
mation table based upon certain information in the
data undergoing transformation;

c. cryptographically transforming the data by said
function in accordance with the directions of the
entry in the transformation table selected in step
(b);

d. arithmetically combining the data transformed in
step (c) above with a key;

e. selecting at least one other entry in said transforma
tion table based upon certain information in the
data transformed in step (d) above; and

f. cryptographically transforming the data trans
formed in step (d) above by said function in accor
dance with the directions of the entry in the trans
formation table selected in step (e).

35. The method of claim 34 wherein steps (b) through
(f) are carried out repetitively in a predetermined num
ber of rounds.

36. A method of cryptographically transforming elec
tronic data from one form to another comprising the
steps of: A.

a. establishing in memory a first transformation table
associated with a first cryptographic function and a
second transformation table associated with a sec
ond cryptographic function, said tables each in
cluding a plurality of addressable entries which
direct a predetermined transformation of data in
accordance with said functions;

b. selecting at least one of the entries in said first
transformation table based upon certain informa
tion in said data undergoing transformation;

c. cryptographically transforming said data by said
first function in accordance with the directions of
the entry in the first transformation table selected
in step (b);

d. arithmetically combining the data transformed in
step (c) above with a key;

e. selecting at least one of the entries in the second
transformation table based upon certain informa
tion in the data transformed in step (d) above; and

f. cryptographically transforming the data trans
formed in step (d) above by the second function in
accordance with the directions of the entry in the
second transformation table selected in step (e).

37. The method of claim 36 wherein steps (b) through
(f) are carried out repetitively in a predetermined num
ber of rounds.

38. An enclave function for cryptographically trans
forming electronic digital data from one form to an
other comprising the steps of:

a. establishing in memory an enclave table with a
plurality of entries for directing an autoclave func
tion on a portion of the data undergoing transfor
mation;

5,003,596
53

b. selecting a block of data having an even number of
bytes;

c. dividing said data block into a first half-block in
cluding one-half of the bytes of the data block and
into a second half-block including the remaining
bytes of the data block;

d. transforning the first half-block by said autoclave
function as directed by a first entry in said enclave
table;

e. transforming the resultant first half-block after step
(d) above by said autoclave function as directed by
a second entry in said enclave table;

f. combining the second half-block with the resultant
first half-block after step (e) above by an Exclusive
OR operation to generate resultant second half
block;

g. transforming the resultant second half-block after
step (f) above by said autoclave function as di
rected by a third entry in said enclave table;

h. transforming the resultant second half-block after
step (g) above by said autoclave function as di
rected by a fourth entry in said enclave table;

i.combining the resultant second half-block after step
(h) above with the resultant first half-block after
step (e) above by an Exclusive OR operation to
generate a resultant first half-block; and

j. joining said resultant first half-block after step (i)
above to said resultant second half-block after step
(h) above to form the transformed data block.

39. The method of claim 38 wherein the autoclave
function used includes the steps of modifying a byte in
the half-block undergoing transformation by adding
said byte to at least two other bytes in the half-block,
and sequentially repeating this addition process on each
of the other bytes in the half-block, using different bytes
in each repetition to be added to the byte, undergoing
transformation.

40. A method of cryptographically transforming elec
tronic data from one form to another comprising the
steps of:

a. establishing in memory a permutation table with a
plurality of addressable entries for directing a par
ticular permutation of said data undergoing trans
formation;

b. establishing in memory a substitution table with a
plurality of addressable entries for directing a par
ticular substitution on said data undergoing trans
formation;

c. selecting at least one of the entries in one of said
permutation and substitution tables based upon
certain information in said data undergoing trans
formation;
cryptographically transforming said data in accor
dance with the table entry selected in step (c)
above and the function associated therewith;

e. arithmetically combining the data transformed in
step (d) with a key;

f, selecting at least one of the entries in the other of
said permutation and substitution tables; and

g. cryptographically transforming the data trans
formed in step (e) in accordance with the table
entry selected in step (f) and the function associated
therewith.

41. The method of claim 40 wherein the substitution
table entry selected is determined by the value of one of
the bytes in the data undergoing transformation and the
substitution function is carried out on all bytes in the

10

5

20

25

30

35

40

45

50

55

60

65

54
data except for the byte used to select the entry from the
substitution table, which byte remains unchanged.

42. The method of claims 40 or 41 further including
the steps of establishing an enclave table with a plurality
of entries for directing an enclave transformation in
which each byte in the data undergoing transformation
becomes a function of itself and of every other byte in
the data, selecting at least one of said entries in said
enclave table, and transforming the data in accordance
with the directions of the selected entry in the enclave
table.

43. The method of claim 40 further including the
steps of generating from said key a determinant table
having a plurality of entries which are the result of an
arithmetic combination of two or more values in the
key, and then using one entry in said determinant table
to select the entry from the enclave table used in the
enclave function transformation of the data.

44. The method of claim 40 wherein steps (b) through
(g) are carried out repetitively in a predetermined num
ber of rounds.

45. The method of claim 44 wherein the substitution
table entry selected is determined by the value of one of
the bytes in the data undergoing transformation, the
substitution function is carried out on all bytes in the
data except for the byte used to select the entry from the
substitution table, which byte remains unchanged, and a
different byte in the data undergoing transformation is
used in each round to select the substitution table entry.

46. The method of claim 45 further including the
steps of selecting a second entry in the substitution table
based upon certain information in the data undergoing
transformation after it has been subjected to said substi
tution function, and then cryptographically transform
ing said data by a second substitution function in accor
dance with the second entry selected.

47. The method of claim 46 wherein the substitution
table entry selected for the second substitution is deter
mined by the value of one of the bytes in the data under
going transformation, excluding the byte used in claim
62 for determining the substitution table entry for the
initial substitution function.

48. The method of claim 44 wherein the step of con
bining the transformed data with a key includes the
steps of:

h. establishing in memory a key table with a plurality
of multi-byte key entries;

i. selecting an entry from the key table based on infor
mation in at least one of the bytes in the data under
going transformation; and

j. arithmetically combining each byte in the selected
key with a corresponding byte in the data undergo
ing transformation, except that the data bytes used
to select the key from the table entry remain un
changed, with a different byte in the data undergo
ing transformation used in each round to select the
entry from the key table.

49. The method of claim 44 wherein the step of com
bining the transformed data with a key includes the
steps of: p1 h. establishing in memory a key table with a
plurality of multi-byte key entries;

i. selecting an entry from the key table based on infor
mation in at least one of the bytes in the data under
going transformation; and

j. arithmetically combining each byte in the selected
key with a corresponding byte in the data undergo
ing transformation, except that the data bytes used

5,003,596
55

to select the key from the table entry remain un
changed.

50. The method of claim 44 wherein the step of com
bining the transformed data with a key includes the
steps of:

h. establishing in memory a key table with a plurality
of multi-byte key entries;

i. selecting an entry from the key table based on infor
nation in at least one of the bytes in the data under
going transformation; and .

j. arithmetically combining each byte in the selected
key with a corresponding byte in the data undergo
ing transformation.

51. The method of claims 48, 49 or 50 wherein bits in
the selected key are arithmetically combined with the
corresponding bits in the data undergoing transforma
tion by an Exclusive OR operation.

52. The method of claims 48, 49, or 50 further includ
ing the steps of generating from the key table a determi
nant table having a plurality of entries which are each
the result of an arithmetic combination of two or more
values in the key table, and then combining an entry
from said determinant table with said one of the values
in the data undergoing transformation to select an entry
from the key table. -

53. The method of claim 52 wherein a different entry
from said determinant table is used during each round.

54. The method of claim 52 wherein the entry from
the determinant table and said one of the bytes in the
data undergoing transformation are combined by an
Exclusive OR operation.

55. The method of claims 48, 49 or 50 wherein said
key table is established by the steps of:

k. establishing an initial key having a plurality of
bytes;

i. selecting, in turn, at least one of said entries in each
of said permutation and substitution tables based
upon certain information in said initial key;

m. transforming said initial key by said substitution
and permutation functions in accordance with the
directions of said selected entries in said tables;

n. storing said transformed initial key as an entry in
the key table memory;

o. electing, in turn, at least one of said entries in each
of said substitution and permutation tables based
upon certain information in at least one of the keys
stored in the key table memory.

p. transforming the key used in step (o) above by said
substitution and permutation functions in accor

5

10

15

20

25

30

35

40

45

50

55

60

65

56
dance with the directions of said selected entries in
said tables;

q. storing said transformed key as another entry in the
key table memory; and

r. performing steps (o)-(q) above repetitively until
said key table memory has a desired plurality of
keys stored therein.

56. The method of claim 55 wherein said initial key is
not stored as an entry in the key table memory.

57. The method of claim 55 wherein the entries in the
substitution and permutation tables selected in step (o)
above are based upon certain information in the latest
key stored in the key table memory.

58. The method of claims 48, 49 or 50 further includ
ing the steps of establishing an enclave table with a
plurality of entries for directing an enclave transforma
tion in which each byte in the data undergoing transfor
mation in which each byte in the data undergoing trans
formation becomes a function of itself and of every
other byte in the data, selecting at least one of said
entries in said enclave table, and transforming the data
in accordance with the directions of the selected entry
in the enclave table.

59. The method of claim 58 further including the
steps of generating from said key table a determinant
table having a plurality of entries which are the result of
an arithmetic combination of two or more values in the
key table, and then using one entry in said determinant
table to select the entry from the enclave table used in
the enclave function transformation of the data.

60. The method of claim 59 wherein a different entry
from said determinant table is used during each round.

61. The method of claims 48, 49 or 50 further includ
ing the steps of selecting a second key from the key
table memory based on the value of one of the bytes in
the data undergoing transformation, excluding the byte
used in claims 48, 49 or 50 and arithmetically combining
each byte in the selected second key with a correspond
ing byte in the data undergoing transformation, except
that the byte used to select the second key remains
unchanged, with a different byte in the data undergoing
transformation used in each round to select the second
key.

62. The method of claims 40 or 44 wherein the per
mutation table entry selected is determined by an arith
metic combination of the values of the bytes in the data
undergoing transformation.

sk xic ak k k

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,003,596 Page 1 of 2
DATED : March 26, 1991
NVENTORKS: Michael C. Wood

it is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below: On the title page, Item 56 :

Under Referenced Cited U.S. PATENT DOCUMENTS "3,461,451 8/1969
Guteber 341/178" should read --3,461,451 8/1969 Gutleber 341/178--.

and under

OTHER PUBLICATIONS insert

--Favre et al., "Data Scrambler Using Table Look-Up Procedure"; IBM
Technical Disclosure Bulletin, (Vol. 20, No. 7; 12/77;
pp. 2724-2726; 380/28). --.

Column 2 Line 5 after "for" insert --business and non-military
government use. Patents--.

Column 3 Line 17 following "is" insert --shown--.

Column 5 Line 37 "2 modulus 1." should read -2 = modulus - 1.--.

Column 19 Line 55 "key" should read -key

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,003,596 Page 2 of 2
DATED : March 26, 1991
INVENTORS : Michael C. Wood

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 29 Line 55 "5" should read --85--.

Column 29 Line 56'28" should read -128--.

Claim 1 c. Lines 30-31 Column 47 after "said" delete --data-.

Claim 29 Line 43 Column 51 "1" should read ----.

Claim 43 Line 12 Column 54 "40" should read --42--.

Claim 47 Line 42 Column 54"62" should read -39-.
Claim 49 Line 61 Column 54 "of: p1 h." should read --of:

h.--.

Claim 55 O. Line 44 Column 55 "electing" should read --Selecting--.

Claim 58 Lines 17-18 Column 56 after "transformation" delete
--in which each byte in the data undergoing transformation--.

Signed and Sealed this
Eighth Day of June, 1993

MICHAEL K. KRK

Attesting Officer Acting Commissioner of Patents and Trademarks

