
SYSTEM AND METHOD FOR RELEVANT AI RESPONSES

Need for Relevant AI Content Generation

At present, Large Language Models (LLMs) and the chatbots built on top of them fail to 

produce sufficiently accurate and relevant responses. The industry at large is currently pursuing a

wrong strategy for resolving the interrelated issues of accuracy and relevancy. In fact, AI leaders 

such as Google are pursuing a backwards strategy that is literally the mirror opposite of what is 

needed to produce perfectly accurate, fully relevant AI responses. Consider Google's Gemini 1.5 

Pro as a perfect case in point.

Gemini 1.5 Pro offers a context window of 1 million tokens. The context window is the 

maximum input + output that an LLM can handle in a single request. Google's researchers 

present Gemini Pro as a "near-perfect" model: "Gemini 1.5 Pro achieves near-perfect 'needle' 

recall (>99.7%) up to 1M tokens of 'haystack' in all modalities, i.e., text, video and audio. It 

even maintains this recall performance when extending to 10M tokens in the text modality 

(approximately 7M words)." (Source: "Gemini 1.5: Unlocking multimodal understanding 

across millions of tokens of context" by Google's Gemi Team, https://storage.googleapis.com/

deepmind-media/gemini/gemini_v1_5_report.pdf, last accessed March 16, 2024.)

Yet, even pro-Google, pro-Gemini, reviewers report real-world experiences that stand in stark

contrast to the notion of a "near-perfect" model. For example, Dipanjan Sarkar, Data Science 

Lead at Towards AI and published Natural Language Processing (NLP) author, is one such 

example. This Google/Gemini enthusiast was granted early access to Gemini 1.5 Pro. In one test,

he loaded the contents of three videos into Gemini's context window. Each video described how 

to build a separate character for a popular Role Playing Game called Honkai Star Rail.

• The first video was a guide for building the character Blade.

• The second video was a guide for building the character Ruan Mei.

• The third video was a guide for building the character Dan Heng.

Sarkar asked Gemini to give "a full character build for Blade." Sarkar reports: "However it 

does a fundamental mistake here by suggesting the 4-piece Thief set for relics when that is 

actually the best set for another character in the 2nd video I put (Ruan Mei)." Gemini mixed

up the "relics" used for "Blade" and "Ruan Mei" — a hallucination predicted by this present 

inventor's Noun-Phrase Collision Model — the model that both explains the root-cause of such 



inaccuracies and also provides the solution to finally fixing them. This model that solves the 

issue of accuracy has already been detailed in a separate disclosure. This present filing discloses 

additional methods needed to fully resolve the issue of relevancy, as well as detailing processes 

for combining relevancy and accuracy into a cohesive whole. However, it is first important to 

establish the current unfulfilled, deep-felt need for accurate and relevant AI responses.

Sarkar sought to fix the situation by giving Gemini another prompt that was "a bit more 

specific." Sarkar then reports: "It does get it correct this time ... Of course it’s still not a 100% 

correct because ..." As a pro-Google, pro-Gemini enthusiast, Sarkar presents the response as 

"correct" despite the acknowledgement that "it's still not a 100% correct." (Source: "How Good 

is Google Gemini 1.5 With a Massive 1 Million Context Window?" by Dipanjan Sarkar, https:/

/pub.towardsai.net/how-good-is-google-gemini-1-5-with-a-massive-1-million-context-window-

b386d285845d, last visited March 16, 2024.)

Sarkar's real-world example is examined in more detail below in demonstration of this 

present inventor's novel system and method that fixes the root cause of these inaccuracies — a 

method that would allow Gemini Pro to produce hallucination-free answers to the very same 

prompts.

 Importantly, the hallucination issue Sarkar encountered with Gemini 1.5 Pro is not a cherry-

picked anecdote. On the contrary, LLMs can often excel in laboratory benchmarks and then fall 

apart the moment they are deployed for real-world tasks. In real life there remains an unfulfilled, 

deeply-felt need for accurate and relevant AI responses — as the following section demonstrates.

Actual Performance

Many in the industry have written blog posts focusing exclusively on the "near-perfect" 

99.7% statistic prominently featured in Google's report ("prominently featured" as it is the only 

statistic cited in the report's abstract). For example, YesChat AI which has more than 1 million 

users, wrote a blog post entitled "Google Stuns AI World with Revolutionary Gemini 1.5 Pro 

Large Language Model." The one statistic repeated throughout this post is the "near perfect 

99.7% recall accuracy." (Source: https://www.yeschat.ai/blog-Google-Stuns-AI-World-with-

Revolutionary-Gemini-15-Pro-Large-Language-Model-3811, last visited March 17, 2024.) Data 

scientist Venkata sai santosh cites this singular statistic as "proof" of Gemini 1.5 Pro's accuracy. 

("Google Gemini 1.5 Pro Is Insane" by Venkata sai santosh, https://medium.com/@venkata_sai/



google-gemini-1-5-pro-is-insane-213cdea0e0fa, last visited March 17, 2024.)

However, Google's report itself explicitly acknowledges "observed limitations" regarding the 

99.7% statistic. ("Gemini 1.5: Unlocking multimodal understanding across millions of tokens of 

context" by Google Team, p. 12) Moreover, Google further acknowledges that the 99.7% result 

was produced using "the simplest possible setup." (Id.)

Despite the excellent performance of Gemini 1.5 Pro model on the needle-in-a-
haystack tasks for all three modalities, significantly surpassing previously
reported results (>99.7% for text, 100% for video and 100% for audio), we also
present early findings of observed limitations. By design, the needle-in-a-
haystack task is a retrieval task measuring recall and so far we have considered
the simplest possible setup. A natural extension to the task is to increase the
number of unique “needles” in each haystack, and require the model to retrieve
them all. For a context length of up to 1M tokens, we inserted 100 dierent needles
and measured the total number of correct needles retrieved. (Id.)

Documenting the current unfulfilled need for accurate and relevant AI responses requires 

placing the oft-cited "near perfect" statistic in its proper context. Remarkably, an astute reading 

of the graphical plots included in Google's report reveals situations in which the model produced 

near-zero accuracy. The following places both the "near-perfect" results and the "near-zero" 

results into proper context — revealing the actual performance of Gemini 1.5 Pro — 

demonstrating the still unfulfilled need for accurate and relevant AI responses.

The previously reported 99.7% result was in regards to the Single Needle Benchmark — 

where the AI attempts to find one single statement that is relevant to the given prompt. As 

discussed in detail below, vector databases can do single needle searches independent of LLMs. 

The more interesting question is how well the LLM does in finding multiple relevant statements 

related to the user's prompt. In other words, how well does Gemini 1.5 Pro do on the Multi-

Needle Benchmark? 

As reported by Matthias Bastian, co-founder and publisher of THE DECODER:

If you dig a little deeper into Google's technical report for Gemini 1.5, you will
find a graphic that shows that Google has not yet solved the lost-in-the-middle
problem.

The more complex retrieval task "multiple needles in a haystack" test, in which up
to 100 specific pieces of information are extracted from the text, shows an
average accuracy of between 60 and 70 percent, with numerous outliers
below the 60 percent mark.

(Source: https://the-decoder.com/dont-get-too-excited-about-google-gemini-



pro-1-5s-giant-context-window/, last visited March 16, 2024.)

In fact, six of the outliers in the aforementioned graphic were close to zero percent. (See 

original Google report for confirmation: "Gemini 1.5: Unlocking multimodal understanding 

across millions of tokens of context" by Google Team, p. 12.) 

Moreover, the overall statistic does not mean that Gemini will even achieve a 60 - 70 percent 

performance rate in the real world. As Bastian notes:

Moreover, even the "multiple needles in a haystack" test is simplistic
compared to most real-world application scenarios, where you are not looking
for specific information in a set of data, but rather solving complex tasks such as
summaries and analyzes.

(Source: https://the-decoder.com/dont-get-too-excited-about-google-gemini-
pro-1-5s-giant-context-window/, last visited March 16, 2024.)

It's important to note that the "needles in a haystack" benchmark is a measurement of 

relevance (not accuracy) at least in terms of the manner in which these two words shall be used 

herein. Accuracy is applied after the relevant information has been located. Thus, as Bastian 

notes, Gemini fails to identify 30-40% of the statements most of the time (while missing close to 

100% on occasion). Next, the AI must accurately use the identified statements to fulfill the 

chosen task (something challenging to do with so much of the relevant information already 

missing). 

The actual, real-world performance of an AI system depends on the combination of both 

relevancy and accuracy. The following is a simple, yet useful, formula for computing the 

performance of an AI chatbot: (% relevancy) x (% accuracy).

In other words, if the AI system only locates 60% of the relevant statements and achieves a 

60% accuracy when utilizing them then the overall performance is 36%. Despite the simplicity 

of this metric, it's very useful for one important reason: it treats relevancy and accuracy as 

equally important.

Consider 100% acurracy and 0% relevancy as a perfect case in point. If the LLM responds 

with "I don't know" that's 100% accurate and 0% relevant. At the end of the day, this is 0% 

performance because the user still has 0% of the information that (s)he was looking for. The 

same goes for 0% accuracy and 100% relevancy. If the AI embodiment finds all the relevant 

statements, but it hallucinates when presenting all of them, then the user is still left with 0% 

information (as 100% is hallucination not information). 



Hence, the combination of both relevancy and accuracy is a very useful metric to use when 

assessing an LLMs performance in the domain of Textual Question/Answer Chatbots — a very 

important distinction discussed immediately below.

Achieving Maximum Peformance for Textual Question/Answer Chatbots

Today's AI explosion is now being used for a myriad of things, including coding, computing, 

and querying. For the purposes of this present disclosure, querying shall refer to the situation in 

which the user asks a Question/Answer Chatbot to generate a factual response based on textual 

information contained in a knowledge base (where the knowledge base could be the entirety of 

text accessible via the internet). Such chatbots can be requested to provide an answer to a 

question, or to write a factual news article, or to generate a factual blog post, or to create a 

factual product entry for a catalogue, or even to write an entire factual essay.

While this present disclosure solves the issues of accuracy and relevancy for a very common 

use case, this present disclosure does not inherently resolve all issues of accuracy and relevancy 

for other AI use cases such as coding and computing. However, also disclosed below are 

methods that can be used to maximize both accuracy and relevancy for certain commonplace 

analyses that users often request. Contrasting the findings of two expert reports in a court case is 

one such example. The application of this present system and method within the domains of 

basic analyses (comparing and contrasting) is additionally disclosed herein.

While this present disclosure may not resolve all the issues for other use cases, it does present

methods can be used as the building blocks for doing so. For example, eliminating noun-phrase 

collisions (as explained below) may not fully resolve the issue of accuracy for coding requests 

such as "write a Python script that ...". However, such embodiments will still need to eliminate 

noun-phrase collisions using the methods disclosed herein as building blocks for achieving the 

desired accuracy — since failure to do so will still create a degree of hallucinations (as also 

explained below). 

Thus, any embodiment that uses any of the methods disclosed herein — either in whole, or in 

part, or any obvious derivative thereof — to improve accuracy and/or relevance for any AI/ML/

NLP use case falls within the Spirit and Scope of this disclosure.

The rest of this disclosure proceeds with the understanding that the reader shall consider all 

explanations and conclusions to be within the context of a Textual Question / Answer Chatbot 



(unless otherwise specified). For example, the following section discusses achieving maximum 

performance. This section, and the sections that follow, are to be read in the context of Textual 

Question / Answer Chatbots. In other words, the following section discusses achieving maximum

performance within this specific, commonplace use case.

Marrying Accuracy and Relevance for Maximum Performance

As previously stated, relevancy and accuracy to two separate, yet interrelated issues. 

Relevancy shall herein refer to finding facts within the knowledge domain that are useful 

for responding to the user's query. Accuracy is a measurement of the degree to which the 

generated concurs with the provided facts.  

This present inventor considers there to be two large issues that must be overcome in regards 

to relevancy. Consider the common practice of creating a knowledge base by storing slices of 

documents in a vector database. Let's say that one of document slice says the following "Mary 

likes to browse the internet using her iPhone 15." Thus, a corresponding embedding is stored in 

the vector database — an embedding that is a numerical representation of "Mary likes to browse 

the internet using her iPhone 15."

Consider a user who submits the following prompt: "Tell me about the device that Mary uses 

to visit websites." In common practice, the user's prompt is converted into embedding — a 

numerical representation of "Tell me about the device that Mary uses to visit websites." Such 

numerical representations, called vector embeddings, allow AI implementations to perform 

similarity searches. For example, the phrase in the prompt "uses to visit websites" is 

conceptually similar to the phrase "browse the internet" that is contained within the document 

slice. Vector embeddings allow AI systems to recognize that such phrases are similar, and to even

compute a percentage representing the degree of linguistic similarity.

Hence, the prompt "Tell me about the device that Mary uses to visit websites" is converted 

into a numerical representation — converted into a vector embedding. The degree of linguistic 

similarity between the prompt and each document slice is found by performing a mathetmatical 

operation on the prompt's vector embedding and the vector embedding corresponding to each 

document slice. In the above example, the following document slice would likely be computed as

the most similar document slice: "Mary likes to browse the internet using her iPhone 15."

In the present state-of-the-art, the AI system would send the LLM both the prompt ("Tell me 



about the device that Mary uses to visit websites") and the "context" as well (i.e. the slices of 

documents that are most similar to the prompt itself). In other words, the AI system would send 

something similar to the following:

---

Fulfill the provided Prompt solely using the information in the provided Context below.

Prompt:

Tell me about the device that Mary uses to visit websites.

Context:

Mary likes to browse the internet using her iPhone 15.

--- 

Consider an AI embodiment that uses GPT 3.5 Turbo Model 1106 as the LLM. In this present

example, the LLM has been provided the name of the device that Mary uses: "iPhone 15." 

However, that's all the LLM knows because the iPhone 15 was released in September 2023 (long

after the GPT 3.5 Turbo Model 1106 had finished training). In other words, this LLM has no 

internal information regarding the iPhone 15. Therefore, the LLM has only two choices: solely 

state the name of the device, or start making things up. Given that the user told the chatbot that it 

must "tell about the device," the latter option may indeed be the chatbot's chosen course of 

action — start making things up.

When chatbots do not have sufficient relevant information, they often make things up in an 

attempt to fulfill their instruction. This can often be mitigated by using prompt engineering to 

constrain the chatbot to solely use the provided context when constructing its answer. But even 

where mitigated, this results in extremely poor performance from the user's perspective. The user

wanted information about the device (e.g. what size screen it has, when it was released, what 

ports does it have, etc.). Hence, this is an instance of extremely poor performance due to a very 

low percentage of relevance (performance = % relevancy x % accuracy). 

   Continuing with this example, let's say that another document contains the statement: "The 

iPhone 15 contains a USB-C port." This document slice is relevant to fulfilling the user's prompt.

However, this slice has virtually zero wording similarity to the original prompt: "Tell me about 

the device that Mary uses to visit websites." Hence, this document slice would not be classified 

as relevant when the similarity score for this slice is computed in relation to the user's prompt. 

This is an example of what this present inventor considers the first large issue that needs to be 



addressed in to solve relevancy.

The first large issue is that vector embeddings provide linguistic similarity searching. The 

phrases in the document slices will only be considered relevant if they contain similar words and

phrases. There are no linguistically similar words and phrases in "The iPhone 15 contains a 

USB-C port" and "Tell me about the device that Mary uses to visit websites." 

Some advanced embodiments in the state-of-the-art attempt to address the limitations of 

vector embeddings through hybrid searching. Consider Microsoft's Azure AI Search:

In Azure AI Search, vector fields containing embeddings can live alongside
textual and numerical fields, allowing you to formulate hybrid queries that
execute in parallel. Hybrid queries can take advantage of existing functionality
like filtering, faceting, sorting, scoring profiles, and semantic ranking in a single
search request.

In other words, they allow for a combination of similarity searching based on vector 

embeddings along with the more traditional keyword searching (search for matching text and 

numbers). But such hybrid searching does nothing to resolve the problem at hand, as there are no

keywords in the prompt that would match any of the keywords in the statement regarding iPhone

15's USB-C ports.

While the provided example was intentionally written for ease of explanation, it is 

conceptually based on a real-world issue repeatedly encountered during this present inventor's 

experimentations with developing methods to find the maximum number of relevant facts for 

any given user prompt.

The second large issue comes into play when none of the chosen slices of the documents 

chosen retrieved from the vector database are relevant to the user's query. For example, consider 

a user prompt that specifies the name of a person, yet the slices of documents sent to the LLM all

refer to a different person who has the very same name. This can also occur in a support chatbot 

that may send information regarding a different product model than the one the user wants, 

because both models have the same product name. There are numerous instances in which 

computing similarity based on vector embeddings results in many irrelevant statements being 

sent to the LLM. The LLM then constructs a response based on irrelevant information, causing a 

very bad user experience — a potentially existential crisis for companies depending on the 

severity of the mismatch and the type of chatbot being used.

Hence, relevancy requires minimizing the number of irrelevant statements while 



simultaneously maximizing the number of relevant statements as well. Stated another way, 

maximum relevancy is achieved when sufficient relevant facts are located and irrelevant 

passages are sufficiently filtered out. (A metric for measuring filtering sufficency is described 

later below.)

Once all the relevant statements have been located, relevancy must still be married with 

accuracy for maximum performance. For example, consider the hallucinations that Sarkar 

encountered when prompting Google's Gemini 1.5 Pro regarding the Role Playing Game. The 

LLM was provided all the relevant information needed to correctly fulfill the prompts. 

Nevertheless, the LLM hallucinated incorrect responses.

In regards to Sarkar's experiment, this present inventor's Noun-Phrase Collision Model 

predicts:

• The vast majority of the response will be accurate.

• There will be occasional hallucinations due to the limited presence of noun-phrase 

collisions.

• The number of hallucinations Sarkar experiences would increase if he added information 

regarding building additional characters — even if Sarkar kept the overall token 

consumption the same (at 700k tokens).

• Sarkar could achieve 100% hallucination-free responses by eliminating noun-phrase 

collisions.

The first two predictions are confirmed by Sarkar's report itself. The majority of the response 

was accurate. The reported hallucinations were due to a collision over a colliding noun phrase. 

Sarkar's report confirms that the noun-phrase "relics" caused the LLM to traverse an erroneous 

"relics" noun-phrase path — in that the LLM traversed the "relics" noun-phrase path related to 

Ruan Mei. The final two predictions can be verified through empirical experimentation.   

Remarkably, Sarkar's experience is easily understood in light of this present inventor's Noun-

Phrase Collision Model. In fact, the cause of the hallucination is self-evident in light of this 

model. However, it is the model that makes the cause self-evident. In fact, Sarkar's report shows 

that he did not truly understand the cause of the hallucination, as demonstrated by the way he 

tried to fix it.

Sarkar sought to fix the hallucination by providing a more specific prompt. And herein lies 

the wrong pursuit of the industry as a whole. Prompts can be important (as discussed farther 



below). However, prompts alone can never eliminate hallucinations when the context 

window contains noun-phrase collisions. Moreover, the greater the frequency of noun-

phrase collisions, the greater the rate of hallucinations — even in the presence of the most 

optimal prompt.

Had Sarkar understood this, he would have worked on developing a different method to 

inform the LLM of how to build each character — a method that ensures there are no noun-

phrase collisions when providing such information. Nevertheless, the root cause of the 

hallucination eluded Sarkar — just as it has eluded the industry at large. Just because the cause 

of the hallucination is obvious in light of the Noun-Phrase Collision Model, that does not mean it

is obvious without it. It is the model itself that makes the cause obvious. It is the model itself that

makes methods for fixing the issue obvious as well.

The Noun-Phrase Collision Model has been discussed in the previous disclosure on how to 

build accurate AI systems. This present disclosure teaches how to build AI systems that produce 

relevant responses. This present disclosure also teaches how to marry both relevancy and 

accuracy for maximum performance. Therefore, in view of the latter objective, a brief summary 

of the Noun-Phrase Collision Model is presented later below. Then detailed methods for finding 

the relevant facts for each user query is provided below. Then instructions are given on how to 

marry the relevant facts with the aformented Noun-Phrase Collision Model to achieve maximum 

performance. Then instructions are given to extend this performance beyond mere information 

retrieval and presentation. Such instructions related to basic analyses of contrasting and 

comparing. Finally, this disclosure discusses using the methods contained herein as building 

blocks for providing maximum performance for other use cases as well.

Industry's Backwards Approach

From the perspective of the Noun-Phrase Collision Model, Google's pursuit of a 1 Million 

context window is a backwards approach. It is based on the wrong notion that as long as the 

input window contains the needed information then the LLM will be able provide an accurate, 

relevant response. Therefore, if one can just throw everything into the input window (including 

the kitchen sink) then the LLM can provide the correct response.

This "throw everything possible in there" approach is truly backwards and wrong. The Noun-

Phrase Collision Model states that one wants to limit what is sent to the LLM — limited by the 



avoidance of sending colliding noun phrases. The fact that this present inventor's disclosures are 

opposite of the current industry pursuit evidences that novelty of this present inventor's 

disclosures. The methods disclosed herein are both novel and useful. They are non-obvious to 

those ordinarily skilled in the art, and they fulfill a deep technological need that has remained 

unresolved up to this present time.

It bears noting that the methods disclosed herein provide utility also in regards to both 

processing time and cost. Processing 1 million tokens is both slow and expensive. The methods 

detailed herein are both fast and cheap.

Which leads to yet one additional utility of the disclosed system and method — less powerful 

LLMs can be used to provide fully relevant, perfectly accurate responses. In other words, the 

system and method disclosed here allows smaller LLMs to provide relevant, hallucination-free 

responses. The minimum criteria of such LLMs is discussed below. Also discussed is building 

LLMs that can fit on mobile devices, allowing anyone to have instant access to relevant, 

hallucination-free responses wherever they go.

Hence, the methods disclosed herein not only resolve the issues of relevancy and accuracy, 

but they also resolve a number of other practical issues as well, including speed, cost, and 

general availability.

Noun-Phrase Dominance Model

A prior disclosure discusses the Noun-Phrase Collision Model in depth, as that disclosure 

focused on teaching how to build accurate AI responses. Below is a sufficient explanation to lay 

the groundwork for marrying the relevancy methods disclosed below with accuracy to produce 

maximum performance.

The Noun-Phrase Collision Model is part of this present inventor's larger Noun-Phrase 

Dominance Model. The Noun-Phrase Dominance Model states:

1. LLMs self organize around noun-phrase paths during training. This is only natural 

given that the English language itself is organized around noun-phrase paths.

2. A conflicting noun-phrase path is where there are multiple statements using the same 

noun phrase, but the information describing each noun phrase is erroneous when it is 

applied to any other of the noun phrases.

a) For example: "The store opens at nine. The store sells shoes." This creates two 



noun-phrase paths off the noun-phrase "the store." The two paths are: "opens at 

nine" and "sells shoes." If both statements are about the same store, then there is

no noun-phrase collision because either path can be applied to "the store." 

However, if they are talking about two different stores then this is a noun-phrase 

collision (as the two paths cannot be factually applied to either store).

3. The probability of which noun-phrase paths get traversed is dependent upon the 

current text in the sliding input window. Where noun-phrase collisions exist, there 

remains a degree of probability that the colliding path can be selected and traversed.

a) For example, if there are multiple stores being discussed, and one store is 

mentioned in the context window, then the noun-phrase paths related to that store 

will have a higher probability of being traversed. However, there still remains a 

degree of probability for the colliding paths to be traversed — which results in a 

"hallucination" where the information regarding one store gets wrongly conflated 

as being about the other store.

4. The rate of hallucinations increases based on the frequency of noun-phrase 

collisions — whether in the provided prompt, the provided context, or both.

a) The hallucination rate increases in proportion to the frequency of collisions in the 

provided context.

b) The hallucination rate exponentially increases with the frequency of collisions 

contained in the prompt.

(1) As a reminder, the content of the prompt adjusts the probabilities for the paths 

that are selected in the provided context. If the prompt itself contains multiple 

collisions then this affects the probability distribution for the paths in the 

context.

(a) For example, if the prompt mentions two stores then there can no longer 

be one store that receives a very high probability with the other stores 

receiving significantly lower probabilities. In this situation, the noun-

phrase paths for both of the mentioned stores are assigned high values — 

causing much greater hallucinations as the LLM now frequently traverses 

the colliding noun-phrase paths given the existence of multiple high 

probability stores.



5. Documents in the same knowledge domain often use the same words in reference to 

different things. Hence, documents in the same knowledge domain often cause a 

higher rate of hallucinations (as they contain a higher rate of noun-phrase collisions).

6. Hallucinations can be eliminated by eliminating noun-phrase collisions provided two 

straightforward caveats are met.

a) First, every individual statement must be independently literally true. (Naturally 

untrue statements lead to untrue output.)

b) Second, the provided context must itself be organized around clear-cut noun-

phrase paths so that the LLM can easily select and traverse them. Simply stated, 

the input must be full sentences.

(1) Input that does not consist solely of noun-phrase paths is misaligned with the 

LLM architecture. One common example are citations. These sometimes 

lengthy text chunks are not full sentences. (I.e. they are not comprised of 

noun-phrase paths.) Therefore, they throw the LLM off track. This is why 

LLMs are notorious for seeming to make up citations out of thin air. (Methods

for encoding citations to align with LLM architecture are provided below — 

finally resolving a very common source of hallucinations — thereby 

expanding the application of LLMs for use in academic research and writing.)

In terms of Sarkar, each of the videos was regarding the same knowledge domain (building 

characters) using the same noun-phrases (e.g. "relics") in reference to two different things. After 

all, the "relics" noun-phrase paths of one character cannot be applied to the "relics" noun-phrase 

paths of another character. Hence the reported hallucination.

Notice that the reported hallucination did not come from thin air! Nor was it even a fluke. On 

the contrary, it's the predictable outcome based on the provided input (predictable based on the 

Noun-Phrase Dominance Model). Hence, in this situation the solution to fully accurate responses

cannot be achieved through prompt engineering nor through providing additional context. In fact,

the latter would only increase the hallucination rate if such context introduced additional noun-

phrase collisions.

[End of Public Disclosure]

More information on implementing accurate AI is available at: 

https://www.michaelcalvinwood.net.


